Cargando…
Molecular docking analysis of PET with MHET
An estimated 311 million tons of plastics are produced annually worldwide; 90% of these are derived from petrol. A considerable portion of these plastics is used for packaging (such as drinking bottles), but only ~14% is collected for recycling. Most plastics degrade extremely slowly, thus constitut...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557434/ https://www.ncbi.nlm.nih.gov/pubmed/37808376 http://dx.doi.org/10.6026/97320630019255 |
Sumario: | An estimated 311 million tons of plastics are produced annually worldwide; 90% of these are derived from petrol. A considerable portion of these plastics is used for packaging (such as drinking bottles), but only ~14% is collected for recycling. Most plastics degrade extremely slowly, thus constituting a major environmental hazard, especially in the oceans, where microplastics are a matter of major concern. One potential solution for this problem is the synthesis of degradable plastics from renewable resources. From the microbial consortium, the researchers isolated a unique bacterium Ideonella sakaiensis 201-F6 that could almost completely degrade a thin film of PET in a short span of six weeks at 30°C. The objective of the present study is to identify the ligands that may be exploited to improve catalysis and expand substrate specificity and thus significantly advance enzymatic plastic polymer degradation. |
---|