Cargando…

Neutrino and EM asterometric detection of habitable exoplanets

Discovering habitable exoplanets and exomoons increases the possibility of detecting extraterrestrial life. A bilateral approach, using neutrino and electromagnetic (EM) radiation technologies, can be used to simultaneously characterize star types that generally have exoplanets and exomoons. This in...

Descripción completa

Detalles Bibliográficos
Autor principal: Shapshak, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557436/
https://www.ncbi.nlm.nih.gov/pubmed/37808380
http://dx.doi.org/10.6026/97320630019235
Descripción
Sumario:Discovering habitable exoplanets and exomoons increases the possibility of detecting extraterrestrial life. A bilateral approach, using neutrino and electromagnetic (EM) radiation technologies, can be used to simultaneously characterize star types that generally have exoplanets and exomoons. This includes cool main-sequence, sub-giant, and red-giant stars. Additionally, supernovae, black holes, and neutron and dwarf stars, will be included to widen the investigation, since they sometimes have companions, including stars and planets. Currently, space exploration is advancing beyond the solar system and proliferating into deep space. For this expansion, sophisticated artificial intelligence (AI) is required and being developed for self-coordination and interactive regulation of the various exploratory vehicles and telescopes. [1,2, 3,4,5, 6]