Cargando…
Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals
Sleep staging is crucial for assessing sleep quality and diagnosing sleep disorders. Recent advances in deep learning methods with electroencephalogram (EEG) signals have shown remarkable success in automatic sleep staging. However, the use of deeper neural networks may lead to the issues of gradien...
Autores principales: | Li, Weiming, Gao, Junhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557479/ https://www.ncbi.nlm.nih.gov/pubmed/37810362 http://dx.doi.org/10.7717/peerj-cs.1561 |
Ejemplares similares
-
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023) -
Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM
por: Chen, Cai, et al.
Publicado: (2023) -
Dynamic Gesture Recognition Model Based on Millimeter-Wave Radar With ResNet-18 and LSTM
por: Zhang, Yongqiang, et al.
Publicado: (2022)