Cargando…
Class incremental learning of remote sensing images based on class similarity distillation
When a well-trained model learns a new class, the data distribution differences between the new and old classes inevitably cause catastrophic forgetting in order to perform better in the new class. This behavior differs from human learning. In this article, we propose a class incremental object dete...
Autores principales: | Shen, Mingge, Chen, Dehu, Hu, Silan, Xu, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557500/ https://www.ncbi.nlm.nih.gov/pubmed/37810339 http://dx.doi.org/10.7717/peerj-cs.1583 |
Ejemplares similares
-
Is Class-Incremental Enough for Continual Learning?
por: Cossu, Andrea, et al.
Publicado: (2022) -
Research on remote sensing image extraction based on deep learning
por: Shun, Zhao, et al.
Publicado: (2022) -
Addressing Label Sparsity With Class-Level Common Sense for Google Maps
por: Welty, Chris, et al.
Publicado: (2022) -
Knowledge distillation in deep learning and its applications
por: Alkhulaifi, Abdolmaged, et al.
Publicado: (2021) -
A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
por: Su, Caiyu, et al.
Publicado: (2023)