Cargando…
Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia using Flow Cytometry
Current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in both the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. F...
Autores principales: | Lewis, Joshua E., Cooper, Lee A.D., Jaye, David L., Pozdnyakova, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557578/ https://www.ncbi.nlm.nih.gov/pubmed/37808719 http://dx.doi.org/10.1101/2023.09.18.558289 |
Ejemplares similares
-
Deep Learning for Acute Myeloid Leukemia Diagnosis
por: Nazari, Elham, et al.
Publicado: (2020) -
Radar plots facilitate differential diagnosis of acute promyelocytic leukemia and NPM1+ acute myeloid leukemia by flow cytometry
por: Gupta, Monali, et al.
Publicado: (2020) -
Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry
por: Li, Yueqin, et al.
Publicado: (2019) -
Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning
por: Wills, John W., et al.
Publicado: (2021) -
Identifying Leukemia-associated Immunophenotypes in Acute Myeloid Leukemia Patients Using Multiparameter Flow Cytometry
por: Rasheed, Hadeer Mohamed, et al.
Publicado: (2021)