Cargando…

Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN Domain

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N-terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleoti...

Descripción completa

Detalles Bibliográficos
Autores principales: Small, Gabriel I., Fedorova, Olga, Olinares, Paul Dominic B., Chandanani, Joshua, Banerjee, Anoosha, Choi, Young Joo, Molina, Henrik, Chait, Brian, Darst, Seth A., Campbell, Elizabeth A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557602/
https://www.ncbi.nlm.nih.gov/pubmed/37808858
http://dx.doi.org/10.1101/2023.09.25.558837
Descripción
Sumario:The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N-terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5’-cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here we determine high-resolution cryo-electron microscopy structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.