Cargando…

A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain

Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune en...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Jing-Ping, Brake, Alexis, Donadieu, Maxime, Lee, Amanda, Kawaguchi, Riki, Sati, Pascal, Geschwind, Daniel H., Jacobson, Steven, Schafer, Dorothy P., Reich, Daniel S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557631/
https://www.ncbi.nlm.nih.gov/pubmed/37808784
http://dx.doi.org/10.1101/2023.09.25.559371
_version_ 1785117127616757760
author Lin, Jing-Ping
Brake, Alexis
Donadieu, Maxime
Lee, Amanda
Kawaguchi, Riki
Sati, Pascal
Geschwind, Daniel H.
Jacobson, Steven
Schafer, Dorothy P.
Reich, Daniel S.
author_facet Lin, Jing-Ping
Brake, Alexis
Donadieu, Maxime
Lee, Amanda
Kawaguchi, Riki
Sati, Pascal
Geschwind, Daniel H.
Jacobson, Steven
Schafer, Dorothy P.
Reich, Daniel S.
author_sort Lin, Jing-Ping
collection PubMed
description Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.
format Online
Article
Text
id pubmed-10557631
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105576312023-10-07 A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain Lin, Jing-Ping Brake, Alexis Donadieu, Maxime Lee, Amanda Kawaguchi, Riki Sati, Pascal Geschwind, Daniel H. Jacobson, Steven Schafer, Dorothy P. Reich, Daniel S. bioRxiv Article Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform. Cold Spring Harbor Laboratory 2023-09-27 /pmc/articles/PMC10557631/ /pubmed/37808784 http://dx.doi.org/10.1101/2023.09.25.559371 Text en https://creativecommons.org/publicdomain/zero/1.0/This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license (https://creativecommons.org/publicdomain/zero/1.0/) .
spellingShingle Article
Lin, Jing-Ping
Brake, Alexis
Donadieu, Maxime
Lee, Amanda
Kawaguchi, Riki
Sati, Pascal
Geschwind, Daniel H.
Jacobson, Steven
Schafer, Dorothy P.
Reich, Daniel S.
A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
title A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
title_full A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
title_fullStr A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
title_full_unstemmed A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
title_short A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
title_sort 4d transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557631/
https://www.ncbi.nlm.nih.gov/pubmed/37808784
http://dx.doi.org/10.1101/2023.09.25.559371
work_keys_str_mv AT linjingping a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT brakealexis a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT donadieumaxime a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT leeamanda a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT kawaguchiriki a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT satipascal a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT geschwinddanielh a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT jacobsonsteven a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT schaferdorothyp a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT reichdaniels a4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT linjingping 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT brakealexis 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT donadieumaxime 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT leeamanda 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT kawaguchiriki 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT satipascal 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT geschwinddanielh 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT jacobsonsteven 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT schaferdorothyp 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain
AT reichdaniels 4dtranscriptomicmapfortheevolutionofmultiplesclerosislikelesionsinthemarmosetbrain