Cargando…

Immune modulation of innate and adaptive responses restores immune surveillance and establishes anti-tumor immunological memory

Current immunotherapies have proven effective in strengthening anti-tumor immune responses but constant opposing signals from tumor cells and surrounding microenvironment eventually lead to immune escape. We hypothesize that in situ release of antigens and regulation of both the innate and adaptive...

Descripción completa

Detalles Bibliográficos
Autores principales: Alvero, Ayesha B., Fox, Alexandra, Madina, Bhaskara, Krady, Marie, Gogoi, Radhika, Chehade, Hussein, Nakaar, Valerian, Almassian, Bijan, Yarovinsky, Timur, Rutherford, Thomas, Mor, Gil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557730/
https://www.ncbi.nlm.nih.gov/pubmed/37808682
http://dx.doi.org/10.1101/2023.09.27.559828
Descripción
Sumario:Current immunotherapies have proven effective in strengthening anti-tumor immune responses but constant opposing signals from tumor cells and surrounding microenvironment eventually lead to immune escape. We hypothesize that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system will provide a robust and long-term anti-tumor effect by creating immunological memory against the tumor. To achieve this, we developed CARG-2020, a virus-like-vesicle (VLV). It is a genetically modified and self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three transgenes: 1 ) the pleiotropic antitumor cytokine IL-12 in which the subunits (p35 and p40) are tethered together; 2) the extracellular domain (ECD) of the pro- tumor IL-17RA, which can serve as a dominant negative antagonist; and 3) shRNA for PD-L1. Using a mouse model of ovarian cancer, we demonstrate the oncolytic effect and immune modulatory capacities of CARG-2020. By enhancing IL-12 and blocking IL-17 and PD-L1, CARG-2020 successfully reactivates immune surveillance by promoting M1 instead of M2 macrophage differentiation, inhibiting MDSC expansion, and establishing a potent CD8+ T cell mediated anti-tumoral response. Furthermore, we demonstrate that this therapeutic approach provides tumor-specific and long-term protection preventing the establishment of new tumors. Our results provide rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance the anti-tumor response and to prevent recurrence.