Cargando…

Coordinates in low-dimensional cell shape-space discriminate migration dynamics from single static cell images

Cell shape has long been used to discern cell phenotypes and states, but the underlying premise has not been quantitatively tested. Here, we show that a single cell image can be used to discriminate its migration behavior by analyzing a large number of cell migration data in vitro. We analyzed a lar...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xiuxiu, Chen, Kuangcai, Fang, Ning, Jiang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557792/
https://www.ncbi.nlm.nih.gov/pubmed/37808093
Descripción
Sumario:Cell shape has long been used to discern cell phenotypes and states, but the underlying premise has not been quantitatively tested. Here, we show that a single cell image can be used to discriminate its migration behavior by analyzing a large number of cell migration data in vitro. We analyzed a large number of two-dimensional cell migration images over time and found that the cell shape variation space has only six dimensions, and migration behavior can be determined by the coordinates of a single cell image in this 6-dimensional shape-space. We further show that this is possible because persistent cell migration is characterized by spatial-temporally coordinated protrusion and contraction, and a distribution signature in the shape-space. Our findings provide a quantitative underpinning for using cell morphology to differentiate cell dynamical behavior.