Cargando…
Interpretable neural architecture search and transfer learning for understanding CRISPR/Cas9 off-target enzymatic reactions
Finely-tuned enzymatic pathways control cellular processes, and their dysregulation can lead to disease. Creating predictive and interpretable models for these pathways is challenging because of the complexity of the pathways and of the cellular and genomic contexts. Here we introduce Elektrum, a de...
Autores principales: | Zhang, Zijun, Lamson, Adam R., Shelley, Michael, Troyanskaya, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557798/ https://www.ncbi.nlm.nih.gov/pubmed/37808087 |
Ejemplares similares
-
CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes
por: Li, Victoria R, et al.
Publicado: (2021) -
Broad-spectrum enzymatic inhibition of CRISPR-Cas12a
por: Knott, Gavin J., et al.
Publicado: (2019) -
CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design
por: Anthon, Christian, et al.
Publicado: (2022) -
Off-target effects in CRISPR/Cas9 gene editing
por: Guo, Congting, et al.
Publicado: (2023) -
CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids
por: Yang, Hui, et al.
Publicado: (2023)