Cargando…
Disease-driven domain generalization for neuroimaging-based assessment of Alzheimer’s disease
Development of deep learning models to assess the degree of cognitive impairment on magnetic resonance imaging (MRI) scans has high translational significance. Performance of such models is often affected by potential variabilities stemming from independent protocols for data generation, imaging equ...
Autores principales: | Lteif, Diala, Sreerama, Sandeep, Bargal, Sarah A., Plummer, Bryan A., Au, Rhoda, Kolachalama, Vijaya B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557812/ https://www.ncbi.nlm.nih.gov/pubmed/37808872 http://dx.doi.org/10.1101/2023.09.22.23295984 |
Ejemplares similares
-
Enhancing magnetic resonance imaging-driven Alzheimer’s disease classification performance using generative adversarial learning
por: Zhou, Xiao, et al.
Publicado: (2021) -
Redefining and Validating Digital Biomarkers as Fluid, Dynamic Multi-Dimensional Digital Signal Patterns
por: Au, Rhoda, et al.
Publicado: (2022) -
Temporal association of neuropsychological test performance using unsupervised learning reveals a distinct signature of Alzheimer's disease status
por: Joshi, Prajakta S., et al.
Publicado: (2019) -
Heterogeneity in Alzheimer’s Disease and Related Dementias
por: Au, Rhoda
Publicado: (2019) -
Detection of dementia on voice recordings using deep learning: a Framingham Heart Study
por: Xue, Chonghua, et al.
Publicado: (2021)