Cargando…

An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration

BACKGROUND: The significance of liver metastasis (LM) in increasing the risk of death for postoperative colorectal cancer (CRC) patients necessitates innovative approaches to predict LM. AIM: Our study presents a novel and significant contribution by developing an interpretable fusion model that eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jia, Wang, Xinghao, Cai, Linkun, Sun, Jing, Yang, Zhenghan, Liu, Wenjuan, Wang, Zhenchang, Lv, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557887/
https://www.ncbi.nlm.nih.gov/pubmed/37694452
http://dx.doi.org/10.1002/cam4.6523
_version_ 1785117169856544768
author Li, Jia
Wang, Xinghao
Cai, Linkun
Sun, Jing
Yang, Zhenghan
Liu, Wenjuan
Wang, Zhenchang
Lv, Han
author_facet Li, Jia
Wang, Xinghao
Cai, Linkun
Sun, Jing
Yang, Zhenghan
Liu, Wenjuan
Wang, Zhenchang
Lv, Han
author_sort Li, Jia
collection PubMed
description BACKGROUND: The significance of liver metastasis (LM) in increasing the risk of death for postoperative colorectal cancer (CRC) patients necessitates innovative approaches to predict LM. AIM: Our study presents a novel and significant contribution by developing an interpretable fusion model that effectively integrates both free‐text medical record data and structured laboratory data to predict LM in postoperative CRC patients. METHODS: We used a robust dataset of 1463 patients and leveraged state‐of‐the‐art natural language processing (NLP) and machine learning techniques to construct a two‐layer fusion framework that demonstrates superior predictive performance compared to single modal models. Our innovative two‐tier algorithm fuses the results from different data modalities, achieving balanced prediction results on test data and significantly enhancing the predictive ability of the model. To increase interpretability, we employed Shapley additive explanations to elucidate the contributions of free‐text clinical data and structured clinical data to the final model. Furthermore, we translated our findings into practical clinical applications by creating a novel NLP score‐based nomogram using the top 13 valid predictors identified in our study. RESULTS: The proposed fusion models demonstrated superior predictive performance with an accuracy of 80.8%, precision of 80.3%, recall of 80.5%, and an F1 score of 80.8% in predicting LMs. CONCLUSION: This fusion model represents a notable advancement in predicting LMs for postoperative CRC patients, offering the potential to enhance patient outcomes and support clinical decision‐making.
format Online
Article
Text
id pubmed-10557887
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105578872023-10-07 An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration Li, Jia Wang, Xinghao Cai, Linkun Sun, Jing Yang, Zhenghan Liu, Wenjuan Wang, Zhenchang Lv, Han Cancer Med Research Articles BACKGROUND: The significance of liver metastasis (LM) in increasing the risk of death for postoperative colorectal cancer (CRC) patients necessitates innovative approaches to predict LM. AIM: Our study presents a novel and significant contribution by developing an interpretable fusion model that effectively integrates both free‐text medical record data and structured laboratory data to predict LM in postoperative CRC patients. METHODS: We used a robust dataset of 1463 patients and leveraged state‐of‐the‐art natural language processing (NLP) and machine learning techniques to construct a two‐layer fusion framework that demonstrates superior predictive performance compared to single modal models. Our innovative two‐tier algorithm fuses the results from different data modalities, achieving balanced prediction results on test data and significantly enhancing the predictive ability of the model. To increase interpretability, we employed Shapley additive explanations to elucidate the contributions of free‐text clinical data and structured clinical data to the final model. Furthermore, we translated our findings into practical clinical applications by creating a novel NLP score‐based nomogram using the top 13 valid predictors identified in our study. RESULTS: The proposed fusion models demonstrated superior predictive performance with an accuracy of 80.8%, precision of 80.3%, recall of 80.5%, and an F1 score of 80.8% in predicting LMs. CONCLUSION: This fusion model represents a notable advancement in predicting LMs for postoperative CRC patients, offering the potential to enhance patient outcomes and support clinical decision‐making. John Wiley and Sons Inc. 2023-09-11 /pmc/articles/PMC10557887/ /pubmed/37694452 http://dx.doi.org/10.1002/cam4.6523 Text en © 2023 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Li, Jia
Wang, Xinghao
Cai, Linkun
Sun, Jing
Yang, Zhenghan
Liu, Wenjuan
Wang, Zhenchang
Lv, Han
An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
title An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
title_full An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
title_fullStr An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
title_full_unstemmed An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
title_short An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
title_sort interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557887/
https://www.ncbi.nlm.nih.gov/pubmed/37694452
http://dx.doi.org/10.1002/cam4.6523
work_keys_str_mv AT lijia aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT wangxinghao aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT cailinkun aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT sunjing aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT yangzhenghan aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT liuwenjuan aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT wangzhenchang aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT lvhan aninterpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT lijia interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT wangxinghao interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT cailinkun interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT sunjing interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT yangzhenghan interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT liuwenjuan interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT wangzhenchang interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration
AT lvhan interpretabledeeplearningframeworkforpredictinglivermetastasesinpostoperativecolorectalcancerpatientsusingnaturallanguageprocessingandclinicaldataintegration