Cargando…
An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration
BACKGROUND: The significance of liver metastasis (LM) in increasing the risk of death for postoperative colorectal cancer (CRC) patients necessitates innovative approaches to predict LM. AIM: Our study presents a novel and significant contribution by developing an interpretable fusion model that eff...
Autores principales: | Li, Jia, Wang, Xinghao, Cai, Linkun, Sun, Jing, Yang, Zhenghan, Liu, Wenjuan, Wang, Zhenchang, Lv, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557887/ https://www.ncbi.nlm.nih.gov/pubmed/37694452 http://dx.doi.org/10.1002/cam4.6523 |
Ejemplares similares
-
A Machine Learning Model Based on Unsupervised Clustering Multihabitat to Predict the Pathological Grading of Meningiomas
por: Wang, Xinghao, et al.
Publicado: (2022) -
Bidirectional Mendelian randomization study of insulin-related traits and risk of ovarian cancer
por: Wang, Xinghao, et al.
Publicado: (2023) -
Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT)
por: Li, Jia, et al.
Publicado: (2022) -
Using a classification model for determining the value of liver radiological reports of patients with colorectal cancer
por: Liu, Wenjuan, et al.
Publicado: (2022) -
Role of insula and its subregions in progression from recent onset to chronic idiopathic tinnitus
por: Chen, Qian, et al.
Publicado: (2023)