Cargando…
MeaningBERT: assessing meaning preservation between sentences
In the field of automatic text simplification, assessing whether or not the meaning of the original text has been preserved during simplification is of paramount importance. Metrics relying on n-gram overlap assessment may struggle to deal with simplifications which replace complex phrases with thei...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557945/ https://www.ncbi.nlm.nih.gov/pubmed/37808622 http://dx.doi.org/10.3389/frai.2023.1223924 |
_version_ | 1785117179931262976 |
---|---|
author | Beauchemin, David Saggion, Horacio Khoury, Richard |
author_facet | Beauchemin, David Saggion, Horacio Khoury, Richard |
author_sort | Beauchemin, David |
collection | PubMed |
description | In the field of automatic text simplification, assessing whether or not the meaning of the original text has been preserved during simplification is of paramount importance. Metrics relying on n-gram overlap assessment may struggle to deal with simplifications which replace complex phrases with their simpler paraphrases. Current evaluation metrics for meaning preservation based on large language models (LLMs), such as BertScore in machine translation or QuestEval in summarization, have been proposed. However, none has a strong correlation with human judgment of meaning preservation. Moreover, such metrics have not been assessed in the context of text simplification research. In this study, we present a meta-evaluation of several metrics we apply to measure content similarity in text simplification. We also show that the metrics are unable to pass two trivial, inexpensive content preservation tests. Another contribution of this study is MeaningBERT (https://github.com/GRAAL-Research/MeaningBERT), a new trainable metric designed to assess meaning preservation between two sentences in text simplification, showing how it correlates with human judgment. To demonstrate its quality and versatility, we will also present a compilation of datasets used to assess meaning preservation and benchmark our study against a large selection of popular metrics. |
format | Online Article Text |
id | pubmed-10557945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105579452023-10-07 MeaningBERT: assessing meaning preservation between sentences Beauchemin, David Saggion, Horacio Khoury, Richard Front Artif Intell Artificial Intelligence In the field of automatic text simplification, assessing whether or not the meaning of the original text has been preserved during simplification is of paramount importance. Metrics relying on n-gram overlap assessment may struggle to deal with simplifications which replace complex phrases with their simpler paraphrases. Current evaluation metrics for meaning preservation based on large language models (LLMs), such as BertScore in machine translation or QuestEval in summarization, have been proposed. However, none has a strong correlation with human judgment of meaning preservation. Moreover, such metrics have not been assessed in the context of text simplification research. In this study, we present a meta-evaluation of several metrics we apply to measure content similarity in text simplification. We also show that the metrics are unable to pass two trivial, inexpensive content preservation tests. Another contribution of this study is MeaningBERT (https://github.com/GRAAL-Research/MeaningBERT), a new trainable metric designed to assess meaning preservation between two sentences in text simplification, showing how it correlates with human judgment. To demonstrate its quality and versatility, we will also present a compilation of datasets used to assess meaning preservation and benchmark our study against a large selection of popular metrics. Frontiers Media S.A. 2023-09-22 /pmc/articles/PMC10557945/ /pubmed/37808622 http://dx.doi.org/10.3389/frai.2023.1223924 Text en Copyright © 2023 Beauchemin, Saggion and Khoury. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Artificial Intelligence Beauchemin, David Saggion, Horacio Khoury, Richard MeaningBERT: assessing meaning preservation between sentences |
title | MeaningBERT: assessing meaning preservation between sentences |
title_full | MeaningBERT: assessing meaning preservation between sentences |
title_fullStr | MeaningBERT: assessing meaning preservation between sentences |
title_full_unstemmed | MeaningBERT: assessing meaning preservation between sentences |
title_short | MeaningBERT: assessing meaning preservation between sentences |
title_sort | meaningbert: assessing meaning preservation between sentences |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557945/ https://www.ncbi.nlm.nih.gov/pubmed/37808622 http://dx.doi.org/10.3389/frai.2023.1223924 |
work_keys_str_mv | AT beauchemindavid meaningbertassessingmeaningpreservationbetweensentences AT saggionhoracio meaningbertassessingmeaningpreservationbetweensentences AT khouryrichard meaningbertassessingmeaningpreservationbetweensentences |