Cargando…
Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations
BACKGROUND: In general, bioactive glasses (BAGs) can react with tissue minerals and promote remineralization. However, the application of BAG in bonding agents and its impact on bond strength remain uncertain due to insufficient information and limited research in this area. MATERIALS AND METHODS: T...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557999/ https://www.ncbi.nlm.nih.gov/pubmed/37810451 |
_version_ | 1785117192227913728 |
---|---|
author | Mousavinasab, Sayed Mostafa Sarandi, Farzad Rezvanian, Parsa Atai, Mohammad Mousavinasab, Sepidehsadat |
author_facet | Mousavinasab, Sayed Mostafa Sarandi, Farzad Rezvanian, Parsa Atai, Mohammad Mousavinasab, Sepidehsadat |
author_sort | Mousavinasab, Sayed Mostafa |
collection | PubMed |
description | BACKGROUND: In general, bioactive glasses (BAGs) can react with tissue minerals and promote remineralization. However, the application of BAG in bonding agents and its impact on bond strength remain uncertain due to insufficient information and limited research in this area. MATERIALS AND METHODS: This study employed a randomized controlled design to assess the effects of composite-bonding agents with varying BAG contents on shear bond strength and fracture pattern in sound and demineralized teeth, with and without thermocycling. Thus, 80 healthy third molars were randomly divided into two groups: sound teeth and demineralized teeth. Five bonding agents were applied to the prepared dentin surfaces, including four experimental composite-bonding agents with varying BAG content (0, 0.2, 0.5, and 2 wt%) and the Adper Single Bond commercial bonding as control. The shear bond strength of all samples was measured using a universal tester. The type of failure of each specimen was determined using a stereomicroscope. Kruskal–Wallis nonparametric test was performed on the obtained shear bond strength data followed by Mann–Whitney post hoc test with Bonferroni correction to determine statistical significance. The level of significance was considered P ≤ 0.05 for all tests and was adjusted by Bonferroni correction. RESULTS: Demineralization significantly decreased shear bond strength in the teeth samples. Adper Single Bond exhibited the highest shear bond strength values. The addition of BAG did not have a significant influence on shear bond strength, regardless of demineralization or thermocycling condition. Adhesive failure was the predominant type of failure in all groups. CONCLUSION: The incorporation of BAG filler up to 2 wt% did not result in significant changes in shear bond strength. Experimental adhesive bonding agents with 2 wt% BAG content demonstrated shear bond strengths comparable to the commercial bonding agent in sound nontreated, sound thermocycled, demineralized nontreated, and demineralized thermocycled groups. |
format | Online Article Text |
id | pubmed-10557999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-105579992023-10-07 Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations Mousavinasab, Sayed Mostafa Sarandi, Farzad Rezvanian, Parsa Atai, Mohammad Mousavinasab, Sepidehsadat Dent Res J (Isfahan) Original Article BACKGROUND: In general, bioactive glasses (BAGs) can react with tissue minerals and promote remineralization. However, the application of BAG in bonding agents and its impact on bond strength remain uncertain due to insufficient information and limited research in this area. MATERIALS AND METHODS: This study employed a randomized controlled design to assess the effects of composite-bonding agents with varying BAG contents on shear bond strength and fracture pattern in sound and demineralized teeth, with and without thermocycling. Thus, 80 healthy third molars were randomly divided into two groups: sound teeth and demineralized teeth. Five bonding agents were applied to the prepared dentin surfaces, including four experimental composite-bonding agents with varying BAG content (0, 0.2, 0.5, and 2 wt%) and the Adper Single Bond commercial bonding as control. The shear bond strength of all samples was measured using a universal tester. The type of failure of each specimen was determined using a stereomicroscope. Kruskal–Wallis nonparametric test was performed on the obtained shear bond strength data followed by Mann–Whitney post hoc test with Bonferroni correction to determine statistical significance. The level of significance was considered P ≤ 0.05 for all tests and was adjusted by Bonferroni correction. RESULTS: Demineralization significantly decreased shear bond strength in the teeth samples. Adper Single Bond exhibited the highest shear bond strength values. The addition of BAG did not have a significant influence on shear bond strength, regardless of demineralization or thermocycling condition. Adhesive failure was the predominant type of failure in all groups. CONCLUSION: The incorporation of BAG filler up to 2 wt% did not result in significant changes in shear bond strength. Experimental adhesive bonding agents with 2 wt% BAG content demonstrated shear bond strengths comparable to the commercial bonding agent in sound nontreated, sound thermocycled, demineralized nontreated, and demineralized thermocycled groups. Wolters Kluwer - Medknow 2023-08-28 /pmc/articles/PMC10557999/ /pubmed/37810451 Text en Copyright: © 2023 Dental Research Journal https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Mousavinasab, Sayed Mostafa Sarandi, Farzad Rezvanian, Parsa Atai, Mohammad Mousavinasab, Sepidehsadat Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
title | Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
title_full | Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
title_fullStr | Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
title_full_unstemmed | Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
title_short | Effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
title_sort | effect of bioactive glass-containing dentin adhesives on microshear bond strength of composite restorations |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557999/ https://www.ncbi.nlm.nih.gov/pubmed/37810451 |
work_keys_str_mv | AT mousavinasabsayedmostafa effectofbioactiveglasscontainingdentinadhesivesonmicroshearbondstrengthofcompositerestorations AT sarandifarzad effectofbioactiveglasscontainingdentinadhesivesonmicroshearbondstrengthofcompositerestorations AT rezvanianparsa effectofbioactiveglasscontainingdentinadhesivesonmicroshearbondstrengthofcompositerestorations AT ataimohammad effectofbioactiveglasscontainingdentinadhesivesonmicroshearbondstrengthofcompositerestorations AT mousavinasabsepidehsadat effectofbioactiveglasscontainingdentinadhesivesonmicroshearbondstrengthofcompositerestorations |