Cargando…
SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet...
Autores principales: | Fang, Wei, Chen, Yanqi, Ding, Jianhao, Yu, Zhaofei, Masquelier, Timothée, Chen, Ding, Huang, Liwei, Zhou, Huihui, Li, Guoqi, Tian, Yonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558124/ https://www.ncbi.nlm.nih.gov/pubmed/37801497 http://dx.doi.org/10.1126/sciadv.adi1480 |
Ejemplares similares
-
Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains
por: Masquelier, Timothée, et al.
Publicado: (2008) -
SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron
por: Mozafari, Milad, et al.
Publicado: (2019) -
Optimal spike pattern v.s. noise separation by neurons equipped with STDP
por: Masquelier, Timothée, et al.
Publicado: (2013) -
STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons
por: Masquelier, Timothée
Publicado: (2018) -
Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
por: Masquelier, Timothée, et al.
Publicado: (2007)