Cargando…

Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action

The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medic...

Descripción completa

Detalles Bibliográficos
Autores principales: D’Elia, Domenica, Truu, Jaak, Lahti, Leo, Berland, Magali, Papoutsoglou, Georgios, Ceci, Michelangelo, Zomer, Aldert, Lopes, Marta B., Ibrahimi, Eliana, Gruca, Aleksandra, Nechyporenko, Alina, Frohme, Marcus, Klammsteiner, Thomas, Pau, Enrique Carrillo-de Santa, Marcos-Zambrano, Laura Judith, Hron, Karel, Pio, Gianvito, Simeon, Andrea, Suharoschi, Ramona, Moreno-Indias, Isabel, Temko, Andriy, Nedyalkova, Miroslava, Apostol, Elena-Simona, Truică, Ciprian-Octavian, Shigdel, Rajesh, Telalović, Jasminka Hasić, Bongcam-Rudloff, Erik, Przymus, Piotr, Jordamović, Naida Babić, Falquet, Laurent, Tarazona, Sonia, Sampri, Alexia, Isola, Gaetano, Pérez-Serrano, David, Trajkovik, Vladimir, Klucar, Lubos, Loncar-Turukalo, Tatjana, Havulinna, Aki S., Jansen, Christian, Bertelsen, Randi J., Claesson, Marcus Joakim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558209/
https://www.ncbi.nlm.nih.gov/pubmed/37808321
http://dx.doi.org/10.3389/fmicb.2023.1257002
_version_ 1785117225836871680
author D’Elia, Domenica
Truu, Jaak
Lahti, Leo
Berland, Magali
Papoutsoglou, Georgios
Ceci, Michelangelo
Zomer, Aldert
Lopes, Marta B.
Ibrahimi, Eliana
Gruca, Aleksandra
Nechyporenko, Alina
Frohme, Marcus
Klammsteiner, Thomas
Pau, Enrique Carrillo-de Santa
Marcos-Zambrano, Laura Judith
Hron, Karel
Pio, Gianvito
Simeon, Andrea
Suharoschi, Ramona
Moreno-Indias, Isabel
Temko, Andriy
Nedyalkova, Miroslava
Apostol, Elena-Simona
Truică, Ciprian-Octavian
Shigdel, Rajesh
Telalović, Jasminka Hasić
Bongcam-Rudloff, Erik
Przymus, Piotr
Jordamović, Naida Babić
Falquet, Laurent
Tarazona, Sonia
Sampri, Alexia
Isola, Gaetano
Pérez-Serrano, David
Trajkovik, Vladimir
Klucar, Lubos
Loncar-Turukalo, Tatjana
Havulinna, Aki S.
Jansen, Christian
Bertelsen, Randi J.
Claesson, Marcus Joakim
author_facet D’Elia, Domenica
Truu, Jaak
Lahti, Leo
Berland, Magali
Papoutsoglou, Georgios
Ceci, Michelangelo
Zomer, Aldert
Lopes, Marta B.
Ibrahimi, Eliana
Gruca, Aleksandra
Nechyporenko, Alina
Frohme, Marcus
Klammsteiner, Thomas
Pau, Enrique Carrillo-de Santa
Marcos-Zambrano, Laura Judith
Hron, Karel
Pio, Gianvito
Simeon, Andrea
Suharoschi, Ramona
Moreno-Indias, Isabel
Temko, Andriy
Nedyalkova, Miroslava
Apostol, Elena-Simona
Truică, Ciprian-Octavian
Shigdel, Rajesh
Telalović, Jasminka Hasić
Bongcam-Rudloff, Erik
Przymus, Piotr
Jordamović, Naida Babić
Falquet, Laurent
Tarazona, Sonia
Sampri, Alexia
Isola, Gaetano
Pérez-Serrano, David
Trajkovik, Vladimir
Klucar, Lubos
Loncar-Turukalo, Tatjana
Havulinna, Aki S.
Jansen, Christian
Bertelsen, Randi J.
Claesson, Marcus Joakim
author_sort D’Elia, Domenica
collection PubMed
description The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish “gold standard” protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory ‘omics’ features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.
format Online
Article
Text
id pubmed-10558209
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-105582092023-10-07 Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action D’Elia, Domenica Truu, Jaak Lahti, Leo Berland, Magali Papoutsoglou, Georgios Ceci, Michelangelo Zomer, Aldert Lopes, Marta B. Ibrahimi, Eliana Gruca, Aleksandra Nechyporenko, Alina Frohme, Marcus Klammsteiner, Thomas Pau, Enrique Carrillo-de Santa Marcos-Zambrano, Laura Judith Hron, Karel Pio, Gianvito Simeon, Andrea Suharoschi, Ramona Moreno-Indias, Isabel Temko, Andriy Nedyalkova, Miroslava Apostol, Elena-Simona Truică, Ciprian-Octavian Shigdel, Rajesh Telalović, Jasminka Hasić Bongcam-Rudloff, Erik Przymus, Piotr Jordamović, Naida Babić Falquet, Laurent Tarazona, Sonia Sampri, Alexia Isola, Gaetano Pérez-Serrano, David Trajkovik, Vladimir Klucar, Lubos Loncar-Turukalo, Tatjana Havulinna, Aki S. Jansen, Christian Bertelsen, Randi J. Claesson, Marcus Joakim Front Microbiol Microbiology The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish “gold standard” protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory ‘omics’ features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices. Frontiers Media S.A. 2023-09-25 /pmc/articles/PMC10558209/ /pubmed/37808321 http://dx.doi.org/10.3389/fmicb.2023.1257002 Text en Copyright © 2023 D’Elia, Truu, Lahti, Berland, Papoutsoglou, Ceci, Zomer, Lopes, Ibrahimi, Gruca, Nechyporenko, Frohme, Klammsteiner, Pau, Marcos-Zambrano, Hron, Pio, Simeon, Suharoschi, Moreno-Indias, Temko, Nedyalkova, Apostol, Truică, Shigdel, Telalović, Bongcam-Rudloff, Przymus, Jordamović, Falquet, Tarazona, Sampri, Isola, Pérez-Serrano, Trajkovik, Klucar, Loncar-Turukalo, Havulinna, Jansen, Bertelsen and Claesson. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
D’Elia, Domenica
Truu, Jaak
Lahti, Leo
Berland, Magali
Papoutsoglou, Georgios
Ceci, Michelangelo
Zomer, Aldert
Lopes, Marta B.
Ibrahimi, Eliana
Gruca, Aleksandra
Nechyporenko, Alina
Frohme, Marcus
Klammsteiner, Thomas
Pau, Enrique Carrillo-de Santa
Marcos-Zambrano, Laura Judith
Hron, Karel
Pio, Gianvito
Simeon, Andrea
Suharoschi, Ramona
Moreno-Indias, Isabel
Temko, Andriy
Nedyalkova, Miroslava
Apostol, Elena-Simona
Truică, Ciprian-Octavian
Shigdel, Rajesh
Telalović, Jasminka Hasić
Bongcam-Rudloff, Erik
Przymus, Piotr
Jordamović, Naida Babić
Falquet, Laurent
Tarazona, Sonia
Sampri, Alexia
Isola, Gaetano
Pérez-Serrano, David
Trajkovik, Vladimir
Klucar, Lubos
Loncar-Turukalo, Tatjana
Havulinna, Aki S.
Jansen, Christian
Bertelsen, Randi J.
Claesson, Marcus Joakim
Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
title Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
title_full Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
title_fullStr Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
title_full_unstemmed Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
title_short Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
title_sort advancing microbiome research with machine learning: key findings from the ml4microbiome cost action
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558209/
https://www.ncbi.nlm.nih.gov/pubmed/37808321
http://dx.doi.org/10.3389/fmicb.2023.1257002
work_keys_str_mv AT deliadomenica advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT truujaak advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT lahtileo advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT berlandmagali advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT papoutsoglougeorgios advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT cecimichelangelo advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT zomeraldert advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT lopesmartab advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT ibrahimieliana advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT grucaaleksandra advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT nechyporenkoalina advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT frohmemarcus advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT klammsteinerthomas advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT pauenriquecarrillodesanta advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT marcoszambranolaurajudith advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT hronkarel advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT piogianvito advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT simeonandrea advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT suharoschiramona advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT morenoindiasisabel advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT temkoandriy advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT nedyalkovamiroslava advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT apostolelenasimona advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT truicaciprianoctavian advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT shigdelrajesh advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT telalovicjasminkahasic advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT bongcamrudlofferik advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT przymuspiotr advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT jordamovicnaidababic advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT falquetlaurent advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT tarazonasonia advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT samprialexia advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT isolagaetano advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT perezserranodavid advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT trajkovikvladimir advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT klucarlubos advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT loncarturukalotatjana advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT havulinnaakis advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT jansenchristian advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT bertelsenrandij advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction
AT claessonmarcusjoakim advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction