Cargando…
Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medic...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558209/ https://www.ncbi.nlm.nih.gov/pubmed/37808321 http://dx.doi.org/10.3389/fmicb.2023.1257002 |
_version_ | 1785117225836871680 |
---|---|
author | D’Elia, Domenica Truu, Jaak Lahti, Leo Berland, Magali Papoutsoglou, Georgios Ceci, Michelangelo Zomer, Aldert Lopes, Marta B. Ibrahimi, Eliana Gruca, Aleksandra Nechyporenko, Alina Frohme, Marcus Klammsteiner, Thomas Pau, Enrique Carrillo-de Santa Marcos-Zambrano, Laura Judith Hron, Karel Pio, Gianvito Simeon, Andrea Suharoschi, Ramona Moreno-Indias, Isabel Temko, Andriy Nedyalkova, Miroslava Apostol, Elena-Simona Truică, Ciprian-Octavian Shigdel, Rajesh Telalović, Jasminka Hasić Bongcam-Rudloff, Erik Przymus, Piotr Jordamović, Naida Babić Falquet, Laurent Tarazona, Sonia Sampri, Alexia Isola, Gaetano Pérez-Serrano, David Trajkovik, Vladimir Klucar, Lubos Loncar-Turukalo, Tatjana Havulinna, Aki S. Jansen, Christian Bertelsen, Randi J. Claesson, Marcus Joakim |
author_facet | D’Elia, Domenica Truu, Jaak Lahti, Leo Berland, Magali Papoutsoglou, Georgios Ceci, Michelangelo Zomer, Aldert Lopes, Marta B. Ibrahimi, Eliana Gruca, Aleksandra Nechyporenko, Alina Frohme, Marcus Klammsteiner, Thomas Pau, Enrique Carrillo-de Santa Marcos-Zambrano, Laura Judith Hron, Karel Pio, Gianvito Simeon, Andrea Suharoschi, Ramona Moreno-Indias, Isabel Temko, Andriy Nedyalkova, Miroslava Apostol, Elena-Simona Truică, Ciprian-Octavian Shigdel, Rajesh Telalović, Jasminka Hasić Bongcam-Rudloff, Erik Przymus, Piotr Jordamović, Naida Babić Falquet, Laurent Tarazona, Sonia Sampri, Alexia Isola, Gaetano Pérez-Serrano, David Trajkovik, Vladimir Klucar, Lubos Loncar-Turukalo, Tatjana Havulinna, Aki S. Jansen, Christian Bertelsen, Randi J. Claesson, Marcus Joakim |
author_sort | D’Elia, Domenica |
collection | PubMed |
description | The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish “gold standard” protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory ‘omics’ features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices. |
format | Online Article Text |
id | pubmed-10558209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105582092023-10-07 Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action D’Elia, Domenica Truu, Jaak Lahti, Leo Berland, Magali Papoutsoglou, Georgios Ceci, Michelangelo Zomer, Aldert Lopes, Marta B. Ibrahimi, Eliana Gruca, Aleksandra Nechyporenko, Alina Frohme, Marcus Klammsteiner, Thomas Pau, Enrique Carrillo-de Santa Marcos-Zambrano, Laura Judith Hron, Karel Pio, Gianvito Simeon, Andrea Suharoschi, Ramona Moreno-Indias, Isabel Temko, Andriy Nedyalkova, Miroslava Apostol, Elena-Simona Truică, Ciprian-Octavian Shigdel, Rajesh Telalović, Jasminka Hasić Bongcam-Rudloff, Erik Przymus, Piotr Jordamović, Naida Babić Falquet, Laurent Tarazona, Sonia Sampri, Alexia Isola, Gaetano Pérez-Serrano, David Trajkovik, Vladimir Klucar, Lubos Loncar-Turukalo, Tatjana Havulinna, Aki S. Jansen, Christian Bertelsen, Randi J. Claesson, Marcus Joakim Front Microbiol Microbiology The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish “gold standard” protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory ‘omics’ features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices. Frontiers Media S.A. 2023-09-25 /pmc/articles/PMC10558209/ /pubmed/37808321 http://dx.doi.org/10.3389/fmicb.2023.1257002 Text en Copyright © 2023 D’Elia, Truu, Lahti, Berland, Papoutsoglou, Ceci, Zomer, Lopes, Ibrahimi, Gruca, Nechyporenko, Frohme, Klammsteiner, Pau, Marcos-Zambrano, Hron, Pio, Simeon, Suharoschi, Moreno-Indias, Temko, Nedyalkova, Apostol, Truică, Shigdel, Telalović, Bongcam-Rudloff, Przymus, Jordamović, Falquet, Tarazona, Sampri, Isola, Pérez-Serrano, Trajkovik, Klucar, Loncar-Turukalo, Havulinna, Jansen, Bertelsen and Claesson. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology D’Elia, Domenica Truu, Jaak Lahti, Leo Berland, Magali Papoutsoglou, Georgios Ceci, Michelangelo Zomer, Aldert Lopes, Marta B. Ibrahimi, Eliana Gruca, Aleksandra Nechyporenko, Alina Frohme, Marcus Klammsteiner, Thomas Pau, Enrique Carrillo-de Santa Marcos-Zambrano, Laura Judith Hron, Karel Pio, Gianvito Simeon, Andrea Suharoschi, Ramona Moreno-Indias, Isabel Temko, Andriy Nedyalkova, Miroslava Apostol, Elena-Simona Truică, Ciprian-Octavian Shigdel, Rajesh Telalović, Jasminka Hasić Bongcam-Rudloff, Erik Przymus, Piotr Jordamović, Naida Babić Falquet, Laurent Tarazona, Sonia Sampri, Alexia Isola, Gaetano Pérez-Serrano, David Trajkovik, Vladimir Klucar, Lubos Loncar-Turukalo, Tatjana Havulinna, Aki S. Jansen, Christian Bertelsen, Randi J. Claesson, Marcus Joakim Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action |
title | Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action |
title_full | Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action |
title_fullStr | Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action |
title_full_unstemmed | Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action |
title_short | Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action |
title_sort | advancing microbiome research with machine learning: key findings from the ml4microbiome cost action |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558209/ https://www.ncbi.nlm.nih.gov/pubmed/37808321 http://dx.doi.org/10.3389/fmicb.2023.1257002 |
work_keys_str_mv | AT deliadomenica advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT truujaak advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT lahtileo advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT berlandmagali advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT papoutsoglougeorgios advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT cecimichelangelo advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT zomeraldert advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT lopesmartab advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT ibrahimieliana advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT grucaaleksandra advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT nechyporenkoalina advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT frohmemarcus advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT klammsteinerthomas advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT pauenriquecarrillodesanta advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT marcoszambranolaurajudith advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT hronkarel advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT piogianvito advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT simeonandrea advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT suharoschiramona advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT morenoindiasisabel advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT temkoandriy advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT nedyalkovamiroslava advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT apostolelenasimona advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT truicaciprianoctavian advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT shigdelrajesh advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT telalovicjasminkahasic advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT bongcamrudlofferik advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT przymuspiotr advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT jordamovicnaidababic advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT falquetlaurent advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT tarazonasonia advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT samprialexia advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT isolagaetano advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT perezserranodavid advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT trajkovikvladimir advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT klucarlubos advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT loncarturukalotatjana advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT havulinnaakis advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT jansenchristian advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT bertelsenrandij advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction AT claessonmarcusjoakim advancingmicrobiomeresearchwithmachinelearningkeyfindingsfromtheml4microbiomecostaction |