Cargando…
Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda
BACKGROUND: Vibrio species are among the autochthonous bacterial populations found in surface waters and associated with various life-threatening extraintestinal diseases, especially in human populations with underlying illnesses and wound infections. Presently, very diminutive information exists r...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558413/ https://www.ncbi.nlm.nih.gov/pubmed/37801152 http://dx.doi.org/10.1186/s43141-023-00554-1 |
_version_ | 1785117269786886144 |
---|---|
author | Onohuean, Hope Nwodo, Uchechukwu U. |
author_facet | Onohuean, Hope Nwodo, Uchechukwu U. |
author_sort | Onohuean, Hope |
collection | PubMed |
description | BACKGROUND: Vibrio species are among the autochthonous bacterial populations found in surface waters and associated with various life-threatening extraintestinal diseases, especially in human populations with underlying illnesses and wound infections. Presently, very diminutive information exists regarding these species’ mutational diversity of virulence and resistance genes. This study evaluated variations in endonucleases and mutational diversity of the virulence and resistance genes of Vibrio isolates, harboring virulence-correlated gene (vcgCPI), dihydropteroate synthase type 1 and type II genes (Sul 1 and 11), (aadA) aminoglycoside (3′′) (9) adenylyltransferase gene, (aac(3)-IIa, (aacC2)a, aminoglycoside N(3)-acetyltransferase III, and (strA) aminoglycoside 3′-phosphotransferase resistance genes. METHODS: Using combinations of molecular biology techniques, bioinformatics tools, and sequence analysis. RESULTS: Our result revealed various nucleotide variations in virulence determinants of V. vulnificus (vcgCPI) at nucleotide positions (codon) 73–75 (A → G) and 300–302 (N → S). The aminoglycosides resistance gene (aadA) of Vibrio species depicts a nucleotide difference at position 482 (A → G), while the aminoglycosides resistance gene (sul 1 and 11) showed two variable regions of nucleotide polymorphism (102 and 140). The amino acid differences exist with the nucleotide polymorphism at position 140 (A → E). The banding patterns produced by the restriction enzymes HinP1I, MwoI, and StyD4I showed significant variations. Also, the restriction enzyme digestion of protein dihydropteroate synthase type 1 and type II genes (Sul 1 and 11) differed significantly, while enzymes DpnI and Hinf1 indicate no significant differences. The restriction enzyme NlaIV showed no band compared to reference isolates from the GenBank. However, the resistant determinants show significant point nucleotide mutation, which does not produce any amino acid change with diverse polymorphic regions, as revealed in the restriction digest profile. CONCLUSION: The described virulence and resistance determinants possess specific polymorphic locus relevant to pathogenomics studies, pharmacogenomic, and control of such water-associated strains. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43141-023-00554-1. |
format | Online Article Text |
id | pubmed-10558413 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-105584132023-10-08 Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda Onohuean, Hope Nwodo, Uchechukwu U. J Genet Eng Biotechnol Research BACKGROUND: Vibrio species are among the autochthonous bacterial populations found in surface waters and associated with various life-threatening extraintestinal diseases, especially in human populations with underlying illnesses and wound infections. Presently, very diminutive information exists regarding these species’ mutational diversity of virulence and resistance genes. This study evaluated variations in endonucleases and mutational diversity of the virulence and resistance genes of Vibrio isolates, harboring virulence-correlated gene (vcgCPI), dihydropteroate synthase type 1 and type II genes (Sul 1 and 11), (aadA) aminoglycoside (3′′) (9) adenylyltransferase gene, (aac(3)-IIa, (aacC2)a, aminoglycoside N(3)-acetyltransferase III, and (strA) aminoglycoside 3′-phosphotransferase resistance genes. METHODS: Using combinations of molecular biology techniques, bioinformatics tools, and sequence analysis. RESULTS: Our result revealed various nucleotide variations in virulence determinants of V. vulnificus (vcgCPI) at nucleotide positions (codon) 73–75 (A → G) and 300–302 (N → S). The aminoglycosides resistance gene (aadA) of Vibrio species depicts a nucleotide difference at position 482 (A → G), while the aminoglycosides resistance gene (sul 1 and 11) showed two variable regions of nucleotide polymorphism (102 and 140). The amino acid differences exist with the nucleotide polymorphism at position 140 (A → E). The banding patterns produced by the restriction enzymes HinP1I, MwoI, and StyD4I showed significant variations. Also, the restriction enzyme digestion of protein dihydropteroate synthase type 1 and type II genes (Sul 1 and 11) differed significantly, while enzymes DpnI and Hinf1 indicate no significant differences. The restriction enzyme NlaIV showed no band compared to reference isolates from the GenBank. However, the resistant determinants show significant point nucleotide mutation, which does not produce any amino acid change with diverse polymorphic regions, as revealed in the restriction digest profile. CONCLUSION: The described virulence and resistance determinants possess specific polymorphic locus relevant to pathogenomics studies, pharmacogenomic, and control of such water-associated strains. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43141-023-00554-1. Springer Berlin Heidelberg 2023-10-06 /pmc/articles/PMC10558413/ /pubmed/37801152 http://dx.doi.org/10.1186/s43141-023-00554-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Onohuean, Hope Nwodo, Uchechukwu U. Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda |
title | Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda |
title_full | Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda |
title_fullStr | Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda |
title_full_unstemmed | Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda |
title_short | Polymorphism and mutational diversity of virulence (vcgCPI/vcgCPE) and resistance determinants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) among human pathogenic Vibrio species recovered from surface waters in South-Western districts of Uganda |
title_sort | polymorphism and mutational diversity of virulence (vcgcpi/vcgcpe) and resistance determinants (aac(3)-iia, (aacc2, stra, sul 1, and 11) among human pathogenic vibrio species recovered from surface waters in south-western districts of uganda |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558413/ https://www.ncbi.nlm.nih.gov/pubmed/37801152 http://dx.doi.org/10.1186/s43141-023-00554-1 |
work_keys_str_mv | AT onohueanhope polymorphismandmutationaldiversityofvirulencevcgcpivcgcpeandresistancedeterminantsaac3iiaaacc2strasul1and11amonghumanpathogenicvibriospeciesrecoveredfromsurfacewatersinsouthwesterndistrictsofuganda AT nwodouchechukwuu polymorphismandmutationaldiversityofvirulencevcgcpivcgcpeandresistancedeterminantsaac3iiaaacc2strasul1and11amonghumanpathogenicvibriospeciesrecoveredfromsurfacewatersinsouthwesterndistrictsofuganda |