Cargando…
The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP
Machine learning has become a popular tool for learning models of complex dynamics from biomedical data. In Type 1 Diabetes (T1D) management, these models are increasingly been integrated in decision support systems (DSS) to forecast glucose levels and provide preventive therapeutic suggestions, lik...
Autores principales: | Prendin, Francesco, Pavan, Jacopo, Cappon, Giacomo, Del Favero, Simone, Sparacino, Giovanni, Facchinetti, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558434/ https://www.ncbi.nlm.nih.gov/pubmed/37803177 http://dx.doi.org/10.1038/s41598-023-44155-x |
Ejemplares similares
-
Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only
por: Prendin, Francesco, et al.
Publicado: (2021) -
Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions
por: Prendin, Francesco, et al.
Publicado: (2022) -
Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications
por: Cappon, Giacomo, et al.
Publicado: (2019) -
Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors
por: Vettoretti, Martina, et al.
Publicado: (2020) -
Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences
por: Dickinson, Quinn, et al.
Publicado: (2022)