Cargando…
The impact of imputation quality on machine learning classifiers for datasets with missing values
BACKGROUND: Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using established methods, followed by classification of the now complete sa...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558448/ https://www.ncbi.nlm.nih.gov/pubmed/37803172 http://dx.doi.org/10.1038/s43856-023-00356-z |
_version_ | 1785117277401645056 |
---|---|
author | Shadbahr, Tolou Roberts, Michael Stanczuk, Jan Gilbey, Julian Teare, Philip Dittmer, Sören Thorpe, Matthew Torné, Ramon Viñas Sala, Evis Lió, Pietro Patel, Mishal Preller, Jacobus Rudd, James H. F. Mirtti, Tuomas Rannikko, Antti Sakari Aston, John A. D. Tang, Jing Schönlieb, Carola-Bibiane |
author_facet | Shadbahr, Tolou Roberts, Michael Stanczuk, Jan Gilbey, Julian Teare, Philip Dittmer, Sören Thorpe, Matthew Torné, Ramon Viñas Sala, Evis Lió, Pietro Patel, Mishal Preller, Jacobus Rudd, James H. F. Mirtti, Tuomas Rannikko, Antti Sakari Aston, John A. D. Tang, Jing Schönlieb, Carola-Bibiane |
author_sort | Shadbahr, Tolou |
collection | PubMed |
description | BACKGROUND: Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using established methods, followed by classification of the now complete samples. The focus of the machine learning researcher is to optimise the classifier’s performance. METHODS: We utilise three simulated and three real-world clinical datasets with different feature types and missingness patterns. Initially, we evaluate how the downstream classifier performance depends on the choice of classifier and imputation methods. We employ ANOVA to quantitatively evaluate how the choice of missingness rate, imputation method, and classifier method influences the performance. Additionally, we compare commonly used methods for assessing imputation quality and introduce a class of discrepancy scores based on the sliced Wasserstein distance. We also assess the stability of the imputations and the interpretability of model built on the imputed data. RESULTS: The performance of the classifier is most affected by the percentage of missingness in the test data, with a considerable performance decline observed as the test missingness rate increases. We also show that the commonly used measures for assessing imputation quality tend to lead to imputed data which poorly matches the underlying data distribution, whereas our new class of discrepancy scores performs much better on this measure. Furthermore, we show that the interpretability of classifier models trained using poorly imputed data is compromised. CONCLUSIONS: It is imperative to consider the quality of the imputation when performing downstream classification as the effects on the classifier can be considerable. |
format | Online Article Text |
id | pubmed-10558448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105584482023-10-08 The impact of imputation quality on machine learning classifiers for datasets with missing values Shadbahr, Tolou Roberts, Michael Stanczuk, Jan Gilbey, Julian Teare, Philip Dittmer, Sören Thorpe, Matthew Torné, Ramon Viñas Sala, Evis Lió, Pietro Patel, Mishal Preller, Jacobus Rudd, James H. F. Mirtti, Tuomas Rannikko, Antti Sakari Aston, John A. D. Tang, Jing Schönlieb, Carola-Bibiane Commun Med (Lond) Article BACKGROUND: Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using established methods, followed by classification of the now complete samples. The focus of the machine learning researcher is to optimise the classifier’s performance. METHODS: We utilise three simulated and three real-world clinical datasets with different feature types and missingness patterns. Initially, we evaluate how the downstream classifier performance depends on the choice of classifier and imputation methods. We employ ANOVA to quantitatively evaluate how the choice of missingness rate, imputation method, and classifier method influences the performance. Additionally, we compare commonly used methods for assessing imputation quality and introduce a class of discrepancy scores based on the sliced Wasserstein distance. We also assess the stability of the imputations and the interpretability of model built on the imputed data. RESULTS: The performance of the classifier is most affected by the percentage of missingness in the test data, with a considerable performance decline observed as the test missingness rate increases. We also show that the commonly used measures for assessing imputation quality tend to lead to imputed data which poorly matches the underlying data distribution, whereas our new class of discrepancy scores performs much better on this measure. Furthermore, we show that the interpretability of classifier models trained using poorly imputed data is compromised. CONCLUSIONS: It is imperative to consider the quality of the imputation when performing downstream classification as the effects on the classifier can be considerable. Nature Publishing Group UK 2023-10-06 /pmc/articles/PMC10558448/ /pubmed/37803172 http://dx.doi.org/10.1038/s43856-023-00356-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Shadbahr, Tolou Roberts, Michael Stanczuk, Jan Gilbey, Julian Teare, Philip Dittmer, Sören Thorpe, Matthew Torné, Ramon Viñas Sala, Evis Lió, Pietro Patel, Mishal Preller, Jacobus Rudd, James H. F. Mirtti, Tuomas Rannikko, Antti Sakari Aston, John A. D. Tang, Jing Schönlieb, Carola-Bibiane The impact of imputation quality on machine learning classifiers for datasets with missing values |
title | The impact of imputation quality on machine learning classifiers for datasets with missing values |
title_full | The impact of imputation quality on machine learning classifiers for datasets with missing values |
title_fullStr | The impact of imputation quality on machine learning classifiers for datasets with missing values |
title_full_unstemmed | The impact of imputation quality on machine learning classifiers for datasets with missing values |
title_short | The impact of imputation quality on machine learning classifiers for datasets with missing values |
title_sort | impact of imputation quality on machine learning classifiers for datasets with missing values |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558448/ https://www.ncbi.nlm.nih.gov/pubmed/37803172 http://dx.doi.org/10.1038/s43856-023-00356-z |
work_keys_str_mv | AT shadbahrtolou theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT robertsmichael theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT stanczukjan theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT gilbeyjulian theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT tearephilip theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT dittmersoren theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT thorpematthew theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT torneramonvinas theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT salaevis theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT liopietro theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT patelmishal theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT prellerjacobus theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT ruddjameshf theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT mirttituomas theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT rannikkoanttisakari theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT astonjohnad theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT tangjing theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT schonliebcarolabibiane theimpactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT shadbahrtolou impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT robertsmichael impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT stanczukjan impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT gilbeyjulian impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT tearephilip impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT dittmersoren impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT thorpematthew impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT torneramonvinas impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT salaevis impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT liopietro impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT patelmishal impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT prellerjacobus impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT ruddjameshf impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT mirttituomas impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT rannikkoanttisakari impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT astonjohnad impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT tangjing impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues AT schonliebcarolabibiane impactofimputationqualityonmachinelearningclassifiersfordatasetswithmissingvalues |