Cargando…
First validation of a model-based hepatic percutaneous microwave ablation planning on a clinical dataset
A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558472/ https://www.ncbi.nlm.nih.gov/pubmed/37803064 http://dx.doi.org/10.1038/s41598-023-42543-x |
Sumario: | A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver. The biophysical model uses a simplified formulation of heat deposition on the applicator and a heat sink related to vasculature to solve the bioheat equation. A performance metric is defined to assess how the planned ablation overlaps the actual ground truth. Results demonstrate superiority of this model prediction compared to manufacturer tabulated data and a significant influence of the vasculature cooling effect. Nevertheless, vasculature shortage due to branches occlusion and applicator misalignment due to registration error between scans affects the thermal prediction. With a more accurate vasculature segmentation, occlusion risk can be estimated, whereas branches can be used as liver landmarks to improve the registration accuracy. Overall, this study emphasizes the benefit of a model-based thermal ablation solution in better planning the ablation procedures. Contrast and registration protocols must be adapted to facilitate its integration into the clinical workflow. |
---|