Cargando…
Improving model fairness in image-based computer-aided diagnosis
Deep learning has become a popular tool for computer-aided diagnosis using medical images, sometimes matching or exceeding the performance of clinicians. However, these models can also reflect and amplify human bias, potentially resulting inaccurate missed diagnoses. Despite this concern, the proble...
Autores principales: | Lin, Mingquan, Li, Tianhao, Yang, Yifan, Holste, Gregory, Ding, Ying, Van Tassel, Sarah H., Kovacs, Kyle, Shih, George, Wang, Zhangyang, Lu, Zhiyong, Wang, Fei, Peng, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558498/ https://www.ncbi.nlm.nih.gov/pubmed/37803009 http://dx.doi.org/10.1038/s41467-023-41974-4 |
Ejemplares similares
-
Primary Open-Angle Glaucoma Diagnosis from Optic Disc Photographs Using a Siamese Network
por: Lin, Mingquan, et al.
Publicado: (2022) -
Automated diagnosing primary open-angle glaucoma from fundus image by simulating human’s grading with deep learning
por: Lin, Mingquan, et al.
Publicado: (2022) -
How Does Pruning Impact Long-Tailed Multi-Label Medical Image Classifiers?
por: Holste, Gregory, et al.
Publicado: (2023) -
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge
por: Holste, Gregory, et al.
Publicado: (2023) -
Algorithmic fairness in computational medicine
por: Xu, Jie, et al.
Publicado: (2022)