Cargando…
A pharmacophore-guided deep learning approach for bioactive molecular generation
The rational design of novel molecules with the desired bioactivity is a critical but challenging task in drug discovery, especially when treating a novel target family or understudied targets. We propose a Pharmacophore-Guided deep learning approach for bioactive Molecule Generation (PGMG). Through...
Autores principales: | Zhu, Huimin, Zhou, Renyi, Cao, Dongsheng, Tang, Jing, Li, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558534/ https://www.ncbi.nlm.nih.gov/pubmed/37803000 http://dx.doi.org/10.1038/s41467-023-41454-9 |
Ejemplares similares
-
Deep generative design with 3D pharmacophoric constraints
por: Imrie, Fergus, et al.
Publicado: (2021) -
Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling
por: Derz, Wiebke, et al.
Publicado: (2021) -
Natural Compound Modulates the Cervical Cancer Microenvironment—A Pharmacophore Guided Molecular Modelling Approaches
por: Rampogu, Shailima, et al.
Publicado: (2018) -
Incorporating Target-Specific Pharmacophoric Information
into Deep Generative Models for Fragment Elaboration
por: Hadfield, Thomas E., et al.
Publicado: (2022) -
Discovery of Non-Peptidic Compounds against Chagas Disease Applying Pharmacophore Guided Molecular Modelling Approaches
por: Rampogu, Shailima, et al.
Publicado: (2018)