Cargando…

Untethered Magnetic Soft Robot with Ultra‐Flexible Wirelessly Rechargeable Micro‐Supercapacitor as an Onboard Power Source

Soft robotics has developed rapidly in recent years as an emergent research topic, offering new avenues for various industrial and biomedical settings. Despite these advancements, its applicability is limited to locomotion and actuation due to the lack of an adequate charge storage system that can s...

Descripción completa

Detalles Bibliográficos
Autores principales: Nardekar, Swapnil Shital, Kim, Sang‐Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558651/
https://www.ncbi.nlm.nih.gov/pubmed/37544914
http://dx.doi.org/10.1002/advs.202303918
Descripción
Sumario:Soft robotics has developed rapidly in recent years as an emergent research topic, offering new avenues for various industrial and biomedical settings. Despite these advancements, its applicability is limited to locomotion and actuation due to the lack of an adequate charge storage system that can support the robot's sensory system in challenging conditions. Herein, an ultra‐flexible, lightweight (≈50 milligrams), and wirelessly rechargeable micro‐supercapacitor as an onboard power source for miniaturized soft robots, capable of powering a range of sensory is proposed. The simple and scalable direct laser combustion technique is utilized to fabricate the robust graphene‐like carbon micro‐supercapacitor (GLC‐MSC) electrode. The GLC‐MSC demonstrates superior areal capacitance (8.76 mF cm(−2)), and maintains its original capacitance even under extreme actuation frequency (1–30 Hz). As proof of conceptthe authors fabricate a fully integrated magnetic‐soft robot that shows outstanding locomotion aptitude and charged wirelessly (up to 2.4 V within 25s), making it an ideal onboard power source for soft robotics.