Cargando…

High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave

Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetall...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Wenhuan, Zhang, Xingxing, Chen, Jiamin, Qiu, Qiang, Kang, Yifan, Pei, Ke, Zuo, Shouwei, Zhang, Jincang, Che, Renchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558675/
https://www.ncbi.nlm.nih.gov/pubmed/37526339
http://dx.doi.org/10.1002/advs.202303217
_version_ 1785117330045403136
author Huang, Wenhuan
Zhang, Xingxing
Chen, Jiamin
Qiu, Qiang
Kang, Yifan
Pei, Ke
Zuo, Shouwei
Zhang, Jincang
Che, Renchao
author_facet Huang, Wenhuan
Zhang, Xingxing
Chen, Jiamin
Qiu, Qiang
Kang, Yifan
Pei, Ke
Zuo, Shouwei
Zhang, Jincang
Che, Renchao
author_sort Huang, Wenhuan
collection PubMed
description Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RL (min)) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg(−1) mm(−1) for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
format Online
Article
Text
id pubmed-10558675
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105586752023-10-08 High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave Huang, Wenhuan Zhang, Xingxing Chen, Jiamin Qiu, Qiang Kang, Yifan Pei, Ke Zuo, Shouwei Zhang, Jincang Che, Renchao Adv Sci (Weinh) Research Articles Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RL (min)) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg(−1) mm(−1) for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. John Wiley and Sons Inc. 2023-08-01 /pmc/articles/PMC10558675/ /pubmed/37526339 http://dx.doi.org/10.1002/advs.202303217 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Huang, Wenhuan
Zhang, Xingxing
Chen, Jiamin
Qiu, Qiang
Kang, Yifan
Pei, Ke
Zuo, Shouwei
Zhang, Jincang
Che, Renchao
High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
title High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
title_full High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
title_fullStr High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
title_full_unstemmed High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
title_short High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
title_sort high‐density nanopore confined vortical dipoles and magnetic domains on hierarchical macro/meso/micro/nano porous ultra‐light graphited carbon for adsorbing electromagnetic wave
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558675/
https://www.ncbi.nlm.nih.gov/pubmed/37526339
http://dx.doi.org/10.1002/advs.202303217
work_keys_str_mv AT huangwenhuan highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT zhangxingxing highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT chenjiamin highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT qiuqiang highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT kangyifan highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT peike highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT zuoshouwei highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT zhangjincang highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave
AT cherenchao highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave