Cargando…
High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave
Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetall...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558675/ https://www.ncbi.nlm.nih.gov/pubmed/37526339 http://dx.doi.org/10.1002/advs.202303217 |
_version_ | 1785117330045403136 |
---|---|
author | Huang, Wenhuan Zhang, Xingxing Chen, Jiamin Qiu, Qiang Kang, Yifan Pei, Ke Zuo, Shouwei Zhang, Jincang Che, Renchao |
author_facet | Huang, Wenhuan Zhang, Xingxing Chen, Jiamin Qiu, Qiang Kang, Yifan Pei, Ke Zuo, Shouwei Zhang, Jincang Che, Renchao |
author_sort | Huang, Wenhuan |
collection | PubMed |
description | Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RL (min)) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg(−1) mm(−1) for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. |
format | Online Article Text |
id | pubmed-10558675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105586752023-10-08 High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave Huang, Wenhuan Zhang, Xingxing Chen, Jiamin Qiu, Qiang Kang, Yifan Pei, Ke Zuo, Shouwei Zhang, Jincang Che, Renchao Adv Sci (Weinh) Research Articles Atomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RL (min)) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg(−1) mm(−1) for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future. John Wiley and Sons Inc. 2023-08-01 /pmc/articles/PMC10558675/ /pubmed/37526339 http://dx.doi.org/10.1002/advs.202303217 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Huang, Wenhuan Zhang, Xingxing Chen, Jiamin Qiu, Qiang Kang, Yifan Pei, Ke Zuo, Shouwei Zhang, Jincang Che, Renchao High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
title | High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
title_full | High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
title_fullStr | High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
title_full_unstemmed | High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
title_short | High‐Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra‐Light Graphited Carbon for Adsorbing Electromagnetic Wave |
title_sort | high‐density nanopore confined vortical dipoles and magnetic domains on hierarchical macro/meso/micro/nano porous ultra‐light graphited carbon for adsorbing electromagnetic wave |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558675/ https://www.ncbi.nlm.nih.gov/pubmed/37526339 http://dx.doi.org/10.1002/advs.202303217 |
work_keys_str_mv | AT huangwenhuan highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT zhangxingxing highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT chenjiamin highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT qiuqiang highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT kangyifan highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT peike highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT zuoshouwei highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT zhangjincang highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave AT cherenchao highdensitynanoporeconfinedvorticaldipolesandmagneticdomainsonhierarchicalmacromesomicronanoporousultralightgraphitedcarbonforadsorbingelectromagneticwave |