Cargando…

SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology

Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and th...

Descripción completa

Detalles Bibliográficos
Autores principales: Mühlberg, Alexander, Ritter, Paul, Langer, Simon, Goossens, Chloë, Nübler, Stefanie, Schneidereit, Dominik, Taubmann, Oliver, Denzinger, Felix, Nörenberg, Dominik, Haug, Michael, Schürmann, Sebastian, Horstmeyer, Roarke, Maier, Andreas K., Goldmann, Wolfgang H., Friedrich, Oliver, Kreiss, Lucas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558688/
https://www.ncbi.nlm.nih.gov/pubmed/37582656
http://dx.doi.org/10.1002/advs.202206319
_version_ 1785117333130313728
author Mühlberg, Alexander
Ritter, Paul
Langer, Simon
Goossens, Chloë
Nübler, Stefanie
Schneidereit, Dominik
Taubmann, Oliver
Denzinger, Felix
Nörenberg, Dominik
Haug, Michael
Schürmann, Sebastian
Horstmeyer, Roarke
Maier, Andreas K.
Goldmann, Wolfgang H.
Friedrich, Oliver
Kreiss, Lucas
author_facet Mühlberg, Alexander
Ritter, Paul
Langer, Simon
Goossens, Chloë
Nübler, Stefanie
Schneidereit, Dominik
Taubmann, Oliver
Denzinger, Felix
Nörenberg, Dominik
Haug, Michael
Schürmann, Sebastian
Horstmeyer, Roarke
Maier, Andreas K.
Goldmann, Wolfgang H.
Friedrich, Oliver
Kreiss, Lucas
author_sort Mühlberg, Alexander
collection PubMed
description Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches.
format Online
Article
Text
id pubmed-10558688
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105586882023-10-08 SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology Mühlberg, Alexander Ritter, Paul Langer, Simon Goossens, Chloë Nübler, Stefanie Schneidereit, Dominik Taubmann, Oliver Denzinger, Felix Nörenberg, Dominik Haug, Michael Schürmann, Sebastian Horstmeyer, Roarke Maier, Andreas K. Goldmann, Wolfgang H. Friedrich, Oliver Kreiss, Lucas Adv Sci (Weinh) Research Articles Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches. John Wiley and Sons Inc. 2023-08-15 /pmc/articles/PMC10558688/ /pubmed/37582656 http://dx.doi.org/10.1002/advs.202206319 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Mühlberg, Alexander
Ritter, Paul
Langer, Simon
Goossens, Chloë
Nübler, Stefanie
Schneidereit, Dominik
Taubmann, Oliver
Denzinger, Felix
Nörenberg, Dominik
Haug, Michael
Schürmann, Sebastian
Horstmeyer, Roarke
Maier, Andreas K.
Goldmann, Wolfgang H.
Friedrich, Oliver
Kreiss, Lucas
SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_full SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_fullStr SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_full_unstemmed SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_short SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_sort sempai: a self‐enhancing multi‐photon artificial intelligence for prior‐informed assessment of muscle function and pathology
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558688/
https://www.ncbi.nlm.nih.gov/pubmed/37582656
http://dx.doi.org/10.1002/advs.202206319
work_keys_str_mv AT muhlbergalexander sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT ritterpaul sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT langersimon sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT goossenschloe sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT nublerstefanie sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT schneidereitdominik sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT taubmannoliver sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT denzingerfelix sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT norenbergdominik sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT haugmichael sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT schurmannsebastian sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT horstmeyerroarke sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT maierandreask sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT goldmannwolfgangh sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT friedricholiver sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT kreisslucas sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology