Cargando…
SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and th...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558688/ https://www.ncbi.nlm.nih.gov/pubmed/37582656 http://dx.doi.org/10.1002/advs.202206319 |
_version_ | 1785117333130313728 |
---|---|
author | Mühlberg, Alexander Ritter, Paul Langer, Simon Goossens, Chloë Nübler, Stefanie Schneidereit, Dominik Taubmann, Oliver Denzinger, Felix Nörenberg, Dominik Haug, Michael Schürmann, Sebastian Horstmeyer, Roarke Maier, Andreas K. Goldmann, Wolfgang H. Friedrich, Oliver Kreiss, Lucas |
author_facet | Mühlberg, Alexander Ritter, Paul Langer, Simon Goossens, Chloë Nübler, Stefanie Schneidereit, Dominik Taubmann, Oliver Denzinger, Felix Nörenberg, Dominik Haug, Michael Schürmann, Sebastian Horstmeyer, Roarke Maier, Andreas K. Goldmann, Wolfgang H. Friedrich, Oliver Kreiss, Lucas |
author_sort | Mühlberg, Alexander |
collection | PubMed |
description | Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches. |
format | Online Article Text |
id | pubmed-10558688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105586882023-10-08 SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology Mühlberg, Alexander Ritter, Paul Langer, Simon Goossens, Chloë Nübler, Stefanie Schneidereit, Dominik Taubmann, Oliver Denzinger, Felix Nörenberg, Dominik Haug, Michael Schürmann, Sebastian Horstmeyer, Roarke Maier, Andreas K. Goldmann, Wolfgang H. Friedrich, Oliver Kreiss, Lucas Adv Sci (Weinh) Research Articles Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches. John Wiley and Sons Inc. 2023-08-15 /pmc/articles/PMC10558688/ /pubmed/37582656 http://dx.doi.org/10.1002/advs.202206319 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Mühlberg, Alexander Ritter, Paul Langer, Simon Goossens, Chloë Nübler, Stefanie Schneidereit, Dominik Taubmann, Oliver Denzinger, Felix Nörenberg, Dominik Haug, Michael Schürmann, Sebastian Horstmeyer, Roarke Maier, Andreas K. Goldmann, Wolfgang H. Friedrich, Oliver Kreiss, Lucas SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology |
title | SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology |
title_full | SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology |
title_fullStr | SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology |
title_full_unstemmed | SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology |
title_short | SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology |
title_sort | sempai: a self‐enhancing multi‐photon artificial intelligence for prior‐informed assessment of muscle function and pathology |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558688/ https://www.ncbi.nlm.nih.gov/pubmed/37582656 http://dx.doi.org/10.1002/advs.202206319 |
work_keys_str_mv | AT muhlbergalexander sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT ritterpaul sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT langersimon sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT goossenschloe sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT nublerstefanie sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT schneidereitdominik sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT taubmannoliver sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT denzingerfelix sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT norenbergdominik sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT haugmichael sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT schurmannsebastian sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT horstmeyerroarke sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT maierandreask sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT goldmannwolfgangh sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT friedricholiver sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology AT kreisslucas sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology |