Cargando…

On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers

The metal‒semiconductor heterojunction is imperative for the realization of electrically driven nanolasers for chip‐level platforms. Progress in developing such nanolasers has hitherto rarely been realized, however, because of their complexity in heterojunction fabrication and the need to use noble...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Jia‐Yuan, Nguyen, Duc Huy, Liu, Jia‐Ming, Lo, Chia‐Yao, Ma, Yuan‐Ron, Chen, Yi‐Jia, Yi, Jui‐Yun, Huang, Jian‐Zhi, Giap, Hien, Nguyen, Hai Yen Thi, Liao, Chun‐Da, Lin, Ming‐Yi, Lai, Chien‐Chih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558691/
https://www.ncbi.nlm.nih.gov/pubmed/37559172
http://dx.doi.org/10.1002/advs.202301493
_version_ 1785117333826568192
author Sun, Jia‐Yuan
Nguyen, Duc Huy
Liu, Jia‐Ming
Lo, Chia‐Yao
Ma, Yuan‐Ron
Chen, Yi‐Jia
Yi, Jui‐Yun
Huang, Jian‐Zhi
Giap, Hien
Nguyen, Hai Yen Thi
Liao, Chun‐Da
Lin, Ming‐Yi
Lai, Chien‐Chih
author_facet Sun, Jia‐Yuan
Nguyen, Duc Huy
Liu, Jia‐Ming
Lo, Chia‐Yao
Ma, Yuan‐Ron
Chen, Yi‐Jia
Yi, Jui‐Yun
Huang, Jian‐Zhi
Giap, Hien
Nguyen, Hai Yen Thi
Liao, Chun‐Da
Lin, Ming‐Yi
Lai, Chien‐Chih
author_sort Sun, Jia‐Yuan
collection PubMed
description The metal‒semiconductor heterojunction is imperative for the realization of electrically driven nanolasers for chip‐level platforms. Progress in developing such nanolasers has hitherto rarely been realized, however, because of their complexity in heterojunction fabrication and the need to use noble metals that are incompatible with microelectronic manufacturing. Most plasmonic nanolasers lase either above a high threshold (10(1)‒10(3) MW cm(−2)) or at a cryogenic temperature, and lasing is possible only after they are removed from the substrate to avoid the large ohmic loss and the low modal reflectivity, making monolithic fabrication impossible. Here, for the first time, record‐low‐threshold, room‐temperature ultraviolet (UV) lasing of plasmon‐coupled core‒shell nanowires that are directly grown on silicon is demonstrated. The naturally formed core‒shell metal‒semiconductor heterostructure of the nanowires leads to a 100‐fold improvement in growth density over previous results. This unprecedentedly high nanowire density creates intense plasmonic resonance, which is outcoupled to the resonant Fabry‒Pérot microcavity. By boosting the emission strength by a factor of 100, the hybrid photonic‒plasmonic system successfully facilitates a record‐low laser threshold of 12 kW cm(−2) with a spontaneous emission coupling factor as high as ≈0.32 in the 340‒360 nm range. Such architecture is simple and cost‐competitive for future UV sources in silicon integration.
format Online
Article
Text
id pubmed-10558691
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105586912023-10-08 On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers Sun, Jia‐Yuan Nguyen, Duc Huy Liu, Jia‐Ming Lo, Chia‐Yao Ma, Yuan‐Ron Chen, Yi‐Jia Yi, Jui‐Yun Huang, Jian‐Zhi Giap, Hien Nguyen, Hai Yen Thi Liao, Chun‐Da Lin, Ming‐Yi Lai, Chien‐Chih Adv Sci (Weinh) Research Articles The metal‒semiconductor heterojunction is imperative for the realization of electrically driven nanolasers for chip‐level platforms. Progress in developing such nanolasers has hitherto rarely been realized, however, because of their complexity in heterojunction fabrication and the need to use noble metals that are incompatible with microelectronic manufacturing. Most plasmonic nanolasers lase either above a high threshold (10(1)‒10(3) MW cm(−2)) or at a cryogenic temperature, and lasing is possible only after they are removed from the substrate to avoid the large ohmic loss and the low modal reflectivity, making monolithic fabrication impossible. Here, for the first time, record‐low‐threshold, room‐temperature ultraviolet (UV) lasing of plasmon‐coupled core‒shell nanowires that are directly grown on silicon is demonstrated. The naturally formed core‒shell metal‒semiconductor heterostructure of the nanowires leads to a 100‐fold improvement in growth density over previous results. This unprecedentedly high nanowire density creates intense plasmonic resonance, which is outcoupled to the resonant Fabry‒Pérot microcavity. By boosting the emission strength by a factor of 100, the hybrid photonic‒plasmonic system successfully facilitates a record‐low laser threshold of 12 kW cm(−2) with a spontaneous emission coupling factor as high as ≈0.32 in the 340‒360 nm range. Such architecture is simple and cost‐competitive for future UV sources in silicon integration. John Wiley and Sons Inc. 2023-08-09 /pmc/articles/PMC10558691/ /pubmed/37559172 http://dx.doi.org/10.1002/advs.202301493 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Sun, Jia‐Yuan
Nguyen, Duc Huy
Liu, Jia‐Ming
Lo, Chia‐Yao
Ma, Yuan‐Ron
Chen, Yi‐Jia
Yi, Jui‐Yun
Huang, Jian‐Zhi
Giap, Hien
Nguyen, Hai Yen Thi
Liao, Chun‐Da
Lin, Ming‐Yi
Lai, Chien‐Chih
On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers
title On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers
title_full On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers
title_fullStr On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers
title_full_unstemmed On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers
title_short On‐Chip Monolithically Integrated Ultraviolet Low‐Threshold Plasmonic Metal‒Semiconductor Heterojunction Nanolasers
title_sort on‐chip monolithically integrated ultraviolet low‐threshold plasmonic metal‒semiconductor heterojunction nanolasers
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558691/
https://www.ncbi.nlm.nih.gov/pubmed/37559172
http://dx.doi.org/10.1002/advs.202301493
work_keys_str_mv AT sunjiayuan onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT nguyenduchuy onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT liujiaming onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT lochiayao onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT mayuanron onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT chenyijia onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT yijuiyun onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT huangjianzhi onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT giaphien onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT nguyenhaiyenthi onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT liaochunda onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT linmingyi onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers
AT laichienchih onchipmonolithicallyintegratedultravioletlowthresholdplasmonicmetalsemiconductorheterojunctionnanolasers