Cargando…
Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models
Oxidation states (OS) are the charges on atoms due to electrons gained or lost upon applying an ionic approximation to their bonds. As a fundamental property, OS has been widely used in charge‐neutrality verification, crystal structure determination, and reaction estimation. Currently, only heuristi...
Autores principales: | Fu, Nihang, Hu, Jeffrey, Feng, Ying, Morrison, Gregory, zur Loye, Hans‐Conrad, Hu, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558692/ https://www.ncbi.nlm.nih.gov/pubmed/37551059 http://dx.doi.org/10.1002/advs.202301011 |
Ejemplares similares
-
Probabilistic generative transformer language models for generative design of molecules
por: Wei, Lai, et al.
Publicado: (2023) -
Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage †
por: Barber, Peter, et al.
Publicado: (2009) -
“Soft” Alkali Bromide and Iodide Fluxes for Crystal Growth
por: Klepov, Vladislav V., et al.
Publicado: (2020) -
Scalable deeper graph neural networks for high-performance materials property prediction
por: Omee, Sadman Sadeed, et al.
Publicado: (2022) -
Observation of the Same New Sheet Topology in Both the Layered Uranyl Oxide-Phosphate Cs(11)[(UO(2))(12)(PO(4))(3)O(13)] and the Layered Uranyl Oxyfluoride-Phosphate Rb(11)[(UO(2))(12)(PO(4))(3)O(12)F(2)] Prepared by Flux Crystal Growth
por: Juillerat, Christian A., et al.
Publicado: (2019)