Cargando…
Machine learning-based technique for resonance and directivity prediction of UMTS LTE band quasi Yagi antenna
In this study, we have presented our findings on the deployment of a machine learning (ML) technique to enhance the performance of LTE applications employing quasi-Yagi-Uda antennas at 2100 MHz UMTS band. A number of techniques, including simulation, measurement, and a model of an RLC-equivalent cir...
Autores principales: | Haque, Md. Ashraful, Saha, Dipon, Al-Bawri, Samir Salem, Paul, Liton Chandra, Rahman, Md Afzalur, Alshanketi, Faisal, Alhazmi, Ali, Rambe, Ali Hanafiah, Zakariya, M.A., Ba Hashwan, Saeed S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558792/ https://www.ncbi.nlm.nih.gov/pubmed/37809766 http://dx.doi.org/10.1016/j.heliyon.2023.e19548 |
Ejemplares similares
-
Machine learning-based technique for gain and resonance prediction of mid band 5G Yagi antenna
por: Haque, Md. Ashraful, et al.
Publicado: (2023) -
LTE for UMTS: evolution to LTE-advanced
por: Holma, Harri, et al.
Publicado: (2011) -
WCDMA for UMTS: HSPA evolution and LTE
por: Holma, Harri, et al.
Publicado: (2010) -
Microfluidically Frequency-Reconfigurable Quasi-Yagi Dipole Antenna
por: Shah, Syed Imran Hussain, et al.
Publicado: (2018) -
LTE, the UMTS long term evolution: from theory to practice
por: Sesia, Stefania, et al.
Publicado: (2011)