Cargando…
GSDA: Generative adversarial network-based semi-supervised data augmentation for ultrasound image classification
Medical Ultrasound (US) is one of the most widely used imaging modalities in clinical practice, but its usage presents unique challenges such as variable imaging quality. Deep Learning (DL) models can serve as advanced medical US image analysis tools, but their performance is greatly limited by the...
Autores principales: | Liu, Zhaoshan, Lv, Qiujie, Lee, Chau Hung, Shen, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558834/ https://www.ncbi.nlm.nih.gov/pubmed/37809802 http://dx.doi.org/10.1016/j.heliyon.2023.e19585 |
Ejemplares similares
-
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Nakaji, Kouhei, et al.
Publicado: (2021) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
por: Liu, Kun, et al.
Publicado: (2022) -
Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks
por: Qian, Xiaoliang, et al.
Publicado: (2019) -
Healthy-unhealthy animal detection using semi-supervised generative adversarial network
por: Almal, Shubh, et al.
Publicado: (2023)