Cargando…
Evaluation of yield attributes and bioactive phytochemicals of twenty amaranth genotypes of Bengal floodplain
Twenty vegetable amaranth (VA) genotypes were evaluated to assess the variability, associations, path coefficient, and principal component analysis (PCA) of morpho-chemical traits. The genotypes exhibited adequate antioxidant colorants, phytochemicals, and antiradical capacity with significant varia...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558890/ https://www.ncbi.nlm.nih.gov/pubmed/37809463 http://dx.doi.org/10.1016/j.heliyon.2023.e19644 |
Sumario: | Twenty vegetable amaranth (VA) genotypes were evaluated to assess the variability, associations, path coefficient, and principal component analysis (PCA) of morpho-chemical traits. The genotypes exhibited adequate antioxidant colorants, phytochemicals, and antiradical capacity with significant variations across genotypes. Genetic parameters revealed selection criteria for the majority of the traits for improving amaranth foliage yield (FY). Based on correlation coefficient, stem weight, stem base diameter, root weight, plant height, and shoot weight for significant development of FY of VA. Observing significant genotypic correlation with high positive direct effects on FY, the path coefficient (PC) of root weight, stem base diameter, stem weight, and shoot weight could contribute to the noteworthy development of FY of VA. The genotypes AA5, AA6, AA8, AA10, AA11, AA19, and AA20 might be selected for high FY, antioxidant colorants, and antiradical phytochemicals to utilize as colorants and antiradical rich superior high yielding cultivars. The first PC accounted for 37.8% of the variances, which implies a larger proportion of variable information explained by PC1. The features that contributed more to PC1 were FY, SW, STW, RW, and PH, whereas Chl b, total Chl, and Chl a contributed to the second PC. This suggests that there are significant genetic differences between amaranths in terms of biochemical and agro-morphological characteristics. The findings of the current work support plant breeders to investigate the genetic potential of the amaranth germplasm, notably in biochemical parameters. High colorants enrich genotypes that can be selected for extracting natural colorants to use in food processing industries. |
---|