Cargando…

Transfer of generic Escherichia coli and attenuated Salmonella enterica Typhimurium from the soil to the surface of in-shell pecans during harvest

During harvest pecan nuts are at risk of contamination with foodborne pathogens from extended contact with the ground. The objective of this study was to determine the potential transfer of Escherichia coli and Salmonella from the ground to in-shell pecans during the harvesting process. Plots (2 m(2...

Descripción completa

Detalles Bibliográficos
Autores principales: Bardsley, Cameron A., Chasteen, Kaicie, Shapiro-Ilan, David, Bock, Clive H., Niemira, Brendan A., Kumar, Govindaraj Dev
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558922/
https://www.ncbi.nlm.nih.gov/pubmed/37809630
http://dx.doi.org/10.1016/j.heliyon.2023.e19676
Descripción
Sumario:During harvest pecan nuts are at risk of contamination with foodborne pathogens from extended contact with the ground. The objective of this study was to determine the potential transfer of Escherichia coli and Salmonella from the ground to in-shell pecans during the harvesting process. Plots (2 m(2)) were sprayed with 1 L of a rifampicin (rif) resistant strain of either E. coli TVS 353 or an attenuated Salmonella Typhimurium inoculum at a low (∼4 log CFU/ml), mid (∼6 log CFU/ml) or high (∼8 log CFU/ml) concentrations. The following day, nuts were mechanically harvested and samples from each plot were collected at 1 min, 4 h, and 24 h. Samples were enumerated for Salmonella and E. coli on tryptic soy agar supplemented with rif. The Salmonella levels in the soil from the inoculated plots were 2.0 ± 0.3, 4.1 ± 0.1, and 6.4 ± 0.2 log CFU/g for the low, mid, and high inocula, respectively. The E. coli levels in the soil from the inoculated plots were 1.5 ± 0.4, 3.7 ± 0.3, and 5.8 ± 0.1 log CFU/g for the low, mid, and high inocula, respectively. There was a significant difference in the average daily rainfall among the three trials. Trial 3 received 23.8 ± 9.2 cm, while trials 1 and 2 received much less (0.1 ± 0.1 0.0 ± 0.0 cm, respectively). Inoculation concentration and trial were significant (P<0.05) factors that influenced the transfer of E. coli and Salmonella to pecans. For the high inoculum treatment, bacterial transfer to pecans ranged from 0.7 ± 0.3 to 4.1 ± 0.2 for E. coli and 1.3 ± 0.7 to 4.3 ± 0.4 log CFU/g for Salmonella. For the medium inoculum treatment, transfer ranged from <0.3 to 1.5 ± 0.1 for E. coli and <0.3 to 1.9 ± 0.2 log CFU/g for Salmonella. For the low treatment, transfer ranged from <0.3 to 0.4 ± 0.2 and <0.3 to 0.5 ± 0.1 log CFU/g for E. coli and Salmonella, respectively. These results show the need for implementing agricultural practices that prevent potential transfer of foodborne pathogens onto the surface of in-shell pecans during harvest.