Cargando…
Nested ensemble selection: An effective hybrid feature selection method
It has been shown that while feature selection algorithms are able to distinguish between relevant and irrelevant features, they fail to differentiate between relevant and redundant and correlated features. To address this issue, we propose a highly effective approach, called Nested Ensemble Selecti...
Autores principales: | Kamalov, Firuz, Sulieman, Hana, Moussa, Sherif, Reyes, Jorge Avante, Safaraliev, Murodbek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558945/ https://www.ncbi.nlm.nih.gov/pubmed/37809839 http://dx.doi.org/10.1016/j.heliyon.2023.e19686 |
Ejemplares similares
-
Deep learning for Covid-19 forecasting: State-of-the-art review.
por: Kamalov, Firuz, et al.
Publicado: (2022) -
Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention
por: Nazir, Amril, et al.
Publicado: (2023) -
Machine learning based approach to exam cheating detection
por: Kamalov, Firuz, et al.
Publicado: (2021) -
A Bootstrap Framework for Aggregating within and between Feature Selection Methods
por: Salman, Reem, et al.
Publicado: (2021) -
Comparison of Mathematical Methods for Compensating a Current Signal under Current Transformers Saturation Conditions
por: Odinaev, Ismoil, et al.
Publicado: (2021)