Cargando…

Microplastics contamination in fish feeds: Characterization and potential exposure risk assessment for cultivated fish of Bangladesh

Fish feed is becoming an increasingly vital source of nourishment for farmed fish, which are mainly coming from marine fish and agricultural sources. Anthropogenic particles, such as microplastics, are abundant in both marine fish and agricultural byproducts that are utilized to make fish feed. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Muhib, Md Iftakharul, Rahman, Md Mostafizur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559114/
https://www.ncbi.nlm.nih.gov/pubmed/37809616
http://dx.doi.org/10.1016/j.heliyon.2023.e19789
Descripción
Sumario:Fish feed is becoming an increasingly vital source of nourishment for farmed fish, which are mainly coming from marine fish and agricultural sources. Anthropogenic particles, such as microplastics, are abundant in both marine fish and agricultural byproducts that are utilized to make fish feed. This study investigated whether fish feed could be a source of microplastic contamination, and revealed that a 20 weeks adult farmed tilapia fish might consume up to 268.45 ± 1.438 microplastic particles via fish feed where finisher type feeds were found to be mostly contributory in this number. The microplastics were initially observed with a stereomicroscope and FESEM-EDS. Polymeric composition of microplastics was determined to be polypropylene (PP), nylon-6 (NY-6), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl alcohol (PVA), polyethylene (PE), high- and low-density polyethylene (HDPE, LDPE), ethylene vinyl acetate (EVA), polycarbonate (PC), poly vinyl acetate (PVAc), poly urethane (PU) and polyvinyl chloride (PVC) by FTIR. Results also revealed that the size of microplastic particles in all fish feed ranged from 14 μm to 4480 μm, with 550 ± 45.45 to 11,600 ± 56.1 microplastic particles/kg of fish feed. The FESEM-EDS data demonstrated to overlook the microplastic surface along with attachment of heavy metals onto that surface such as Pb, Ni, and Co in finisher type feed that could create additional health risks.