Cargando…
An Emotion Recognition Embedded System using a Lightweight Deep Learning Model
BACKGROUND: Diagnosing emotional states would improve human-computer interaction (HCI) systems to be more effective in practice. Correlations between Electroencephalography (EEG) signals and emotions have been shown in various research; therefore, EEG signal-based methods are the most accurate and i...
Autores principales: | Bazargani, Mehdi, Tahmasebi, Amir, Yazdchi, Mohammadreza, Baharlouei, Zahra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559299/ https://www.ncbi.nlm.nih.gov/pubmed/37809016 http://dx.doi.org/10.4103/jmss.jmss_59_22 |
Ejemplares similares
-
LDIAED: A lightweight deep learning algorithm implementable on automated external defibrillators
por: Nasimi, Fahimeh, et al.
Publicado: (2022) -
Deep-Net: A Lightweight CNN-Based Speech Emotion Recognition System Using Deep Frequency Features
por: Anvarjon, Tursunov, et al.
Publicado: (2020) -
An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones
por: Ankita,, et al.
Publicado: (2021) -
A Lightweight Subgraph-Based Deep Learning Approach for Fall Recognition
por: Zhao, Zhenxiao, et al.
Publicado: (2022) -
Feature Recognition and Style Transfer of Painting Image Using Lightweight Deep Learning
por: Tan, Yuanyuan
Publicado: (2022)