Cargando…
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
Nowadays, as a crucial component of intelligent transportation systems, traffic flow prediction has received extensive concern. However, most of the existing studies extracted spatial-temporal features with modules that do not differentiate with time and space, and failed to consider spatial-tempora...
Autores principales: | Yu, Xian, Bao, Yin-Xin, Shi, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559355/ https://www.ncbi.nlm.nih.gov/pubmed/37809690 http://dx.doi.org/10.1016/j.heliyon.2023.e19927 |
Ejemplares similares
-
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation
por: Drosouli, Ifigenia, et al.
Publicado: (2023)