Cargando…
The diagnostic performance of machine learning based on resting-state functional magnetic resonance imaging data for major depressive disorders: a systematic review and meta-analysis
OBJECTIVE: Machine learning (ML) has been widely used to detect and evaluate major depressive disorder (MDD) using neuroimaging data, i.e., resting-state functional magnetic resonance imaging (rs-fMRI). However, the diagnostic efficiency is unknown. The aim of the study is to conduct an updated meta...
Autores principales: | Chen, Yanjing, Zhao, Wei, Yi, Sijie, Liu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559726/ https://www.ncbi.nlm.nih.gov/pubmed/37811326 http://dx.doi.org/10.3389/fnins.2023.1174080 |
Ejemplares similares
-
Study of Sex Differences in Unmedicated Patients With Major Depressive Disorder by Using Resting State Brain Functional Magnetic Resonance Imaging
por: Mei, Lan, et al.
Publicado: (2022) -
Altered Cingulum Functioning in Major Depressive Disorder Patient With Suicide Attempts: A Resting-State Functional Magnetic Resonance Imaging Study
por: Yang, Chunxia, et al.
Publicado: (2022) -
Altered Variability and Concordance of Dynamic Resting-State Functional Magnetic Resonance Imaging Indices in Patients With Major Depressive Disorder and Childhood Trauma
por: Luo, Qianyi, et al.
Publicado: (2022) -
Neural activity changes in first-episode, drug-naïve patients with major depressive disorder after transcutaneous auricular vagus nerve stimulation treatment: A resting-state fMRI study
por: Yi, Sijie, et al.
Publicado: (2022) -
Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods
por: Zhao, Shu, et al.
Publicado: (2021)