Cargando…
Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells
Shiga toxin type 2 (Stx2) is the primary virulence factor produced by Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), which causes epidemic outbreaks of gastrointestinal sickness and potentially fatal sequela hemolytic uremic syndrome (HUS). Most studies on Stx2-induced apoptosis ha...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559750/ https://www.ncbi.nlm.nih.gov/pubmed/37809632 http://dx.doi.org/10.1016/j.heliyon.2023.e20012 |
_version_ | 1785117572979490816 |
---|---|
author | Tang, Jie Lu, Xiaoxue Zhang, Tao Feng, Yuyang Xu, Qiaolin Li, Jing Lan, Yuanzhi Luo, Huaxing Zeng, Linghai Xiang, Yuanyuan Zhang, Yan Li, Qian Mao, Xuhu Tang, Bin Zeng, Dongzhu |
author_facet | Tang, Jie Lu, Xiaoxue Zhang, Tao Feng, Yuyang Xu, Qiaolin Li, Jing Lan, Yuanzhi Luo, Huaxing Zeng, Linghai Xiang, Yuanyuan Zhang, Yan Li, Qian Mao, Xuhu Tang, Bin Zeng, Dongzhu |
author_sort | Tang, Jie |
collection | PubMed |
description | Shiga toxin type 2 (Stx2) is the primary virulence factor produced by Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), which causes epidemic outbreaks of gastrointestinal sickness and potentially fatal sequela hemolytic uremic syndrome (HUS). Most studies on Stx2-induced apoptosis have been performed with holotoxins, but the mechanism of how the A and B subunits of Stx2 cause apoptosis in cells is not clear. Here, we found that Stx2 A-subunit (Stx2A) induced mitochondrial damage, PINK1/Parkin-dependent mitophagy and apoptosis in Caco-2 cells. PINK1/Parkin-dependent mitophagy caused by Stx2A reduced apoptosis by decreasing the accumulation of reactive oxidative species (ROS). Mechanistically, Stx2A interacts with Tom20 on mitochondria to initiate the translocation of Bax to mitochondria, leading to mitochondrial damage and apoptosis. Overall, these data suggested that Stx2A induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells and that mitophagy caused by Stx2A ameliorates apoptosis by eliminating damaged mitochondria. These findings provide evidence for the potential use of Tom20 inhibition as an anti-Shiga toxin therapy. |
format | Online Article Text |
id | pubmed-10559750 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105597502023-10-08 Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells Tang, Jie Lu, Xiaoxue Zhang, Tao Feng, Yuyang Xu, Qiaolin Li, Jing Lan, Yuanzhi Luo, Huaxing Zeng, Linghai Xiang, Yuanyuan Zhang, Yan Li, Qian Mao, Xuhu Tang, Bin Zeng, Dongzhu Heliyon Research Article Shiga toxin type 2 (Stx2) is the primary virulence factor produced by Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), which causes epidemic outbreaks of gastrointestinal sickness and potentially fatal sequela hemolytic uremic syndrome (HUS). Most studies on Stx2-induced apoptosis have been performed with holotoxins, but the mechanism of how the A and B subunits of Stx2 cause apoptosis in cells is not clear. Here, we found that Stx2 A-subunit (Stx2A) induced mitochondrial damage, PINK1/Parkin-dependent mitophagy and apoptosis in Caco-2 cells. PINK1/Parkin-dependent mitophagy caused by Stx2A reduced apoptosis by decreasing the accumulation of reactive oxidative species (ROS). Mechanistically, Stx2A interacts with Tom20 on mitochondria to initiate the translocation of Bax to mitochondria, leading to mitochondrial damage and apoptosis. Overall, these data suggested that Stx2A induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells and that mitophagy caused by Stx2A ameliorates apoptosis by eliminating damaged mitochondria. These findings provide evidence for the potential use of Tom20 inhibition as an anti-Shiga toxin therapy. Elsevier 2023-09-09 /pmc/articles/PMC10559750/ /pubmed/37809632 http://dx.doi.org/10.1016/j.heliyon.2023.e20012 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Tang, Jie Lu, Xiaoxue Zhang, Tao Feng, Yuyang Xu, Qiaolin Li, Jing Lan, Yuanzhi Luo, Huaxing Zeng, Linghai Xiang, Yuanyuan Zhang, Yan Li, Qian Mao, Xuhu Tang, Bin Zeng, Dongzhu Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells |
title | Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells |
title_full | Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells |
title_fullStr | Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells |
title_full_unstemmed | Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells |
title_short | Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells |
title_sort | shiga toxin 2 a-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of tom20 in caco-2 cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559750/ https://www.ncbi.nlm.nih.gov/pubmed/37809632 http://dx.doi.org/10.1016/j.heliyon.2023.e20012 |
work_keys_str_mv | AT tangjie shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT luxiaoxue shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT zhangtao shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT fengyuyang shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT xuqiaolin shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT lijing shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT lanyuanzhi shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT luohuaxing shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT zenglinghai shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT xiangyuanyuan shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT zhangyan shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT liqian shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT maoxuhu shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT tangbin shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells AT zengdongzhu shigatoxin2asubunitinducesmitochondrialdamagemitophagyandapoptosisviatheinteractionoftom20incaco2cells |