Cargando…
SaPt-CNN-LSTM-AR-EA: a hybrid ensemble learning framework for time series-based multivariate DNA sequence prediction
Biological sequence data mining is hot spot in bioinformatics. A biological sequence can be regarded as a set of characters. Time series is similar to biological sequences in terms of both representation and mechanism. Therefore, in the article, biological sequences are represented with time series...
Autores principales: | Yan, Wu, Tan, Li, Meng-Shan, Li, Sheng, Sheng, Jun, Wang, Fu-an, Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559882/ https://www.ncbi.nlm.nih.gov/pubmed/37810796 http://dx.doi.org/10.7717/peerj.16192 |
Ejemplares similares
-
Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images
por: Albashish, Dheeb
Publicado: (2022) -
Bacteriophage Genetic Edition Using LSTM
por: Ataee, Shabnam, et al.
Publicado: (2022) -
Assessment of SAPT(DFT) with meta-GGA functionals
por: Hapka, Michał, et al.
Publicado: (2020) -
Unexpected
Methyllanthionine Stereochemistry in the
Morphogenetic Lanthipeptide SapT
por: Sarksian, Raymond, et al.
Publicado: (2022) -
A Deep CNN-LSTM Framework for Fast Video Coding
por: Bouaafia, Soulef, et al.
Publicado: (2020)