Cargando…
Photobiotechnology for abiotic stress resilient crops: Recent advances and prospects
Massive crop failures worldwide are caused by abiotic stress. In plants, adverse environmental conditions cause extensive damage to the overall physiology and agronomic yield at various levels. Phytochromes are photosensory phosphoproteins that absorb red (R)/far red (FR) light and play critical rol...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559926/ https://www.ncbi.nlm.nih.gov/pubmed/37810087 http://dx.doi.org/10.1016/j.heliyon.2023.e20158 |
Sumario: | Massive crop failures worldwide are caused by abiotic stress. In plants, adverse environmental conditions cause extensive damage to the overall physiology and agronomic yield at various levels. Phytochromes are photosensory phosphoproteins that absorb red (R)/far red (FR) light and play critical roles in different physiological and biochemical responses to light. Considering the role of phytochrome in essential plant developmental processes, genetically manipulating its expression offers a promising approach to crop improvement. Through modulated phytochrome-mediated signalling pathways, plants can become more resistant to environmental stresses by increasing photosynthetic efficiency, antioxidant activity, and expression of genes associated with stress resistance. Plant growth and development in adverse environments can be improved by understanding the roles of phytochromes in stress tolerance characteristics. A comprehensive overview of recent findings regarding the role of phytochromes in modulating abiotic stress by discussing biochemical and molecular aspects of these mechanisms of photoreceptors is offered in this review. |
---|