Cargando…
Combining clinical and imaging data for predicting functional outcomes after acute ischemic stroke: an automated machine learning approach
This study aimed to develop and validate an automated machine learning (ML) system that predicts 3-month functional outcomes in acute ischemic stroke (AIS) patients by combining clinical and neuroimaging features. Functional outcomes were categorized as unfavorable (modified Rankin Scale ≥ 3) or not...
Autores principales: | Jo, Hongju, Kim, Changi, Gwon, Dowan, Lee, Jaeho, Lee, Joonwon, Park, Kang Min, Park, Seongho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560215/ https://www.ncbi.nlm.nih.gov/pubmed/37805568 http://dx.doi.org/10.1038/s41598-023-44201-8 |
Ejemplares similares
-
Interpretable machine learning for prediction of clinical outcomes in acute ischemic stroke
por: Lee, Joonwon, et al.
Publicado: (2023) -
Application of Machine Learning to Automated Analysis of Cerebral Edema in Large Cohorts of Ischemic Stroke Patients
por: Dhar, Rajat, et al.
Publicado: (2018) -
Machine Learning in Acute Ischemic Stroke Neuroimaging
por: Kamal, Haris, et al.
Publicado: (2018) -
Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning
por: Choi, Jeong-Myeong, et al.
Publicado: (2021) -
Automated advanced imaging in acute ischemic stroke. Certainties and uncertainties
por: Fainardi, Enrico, et al.
Publicado: (2023)