Cargando…

Gapless edge states localized to odd/even layers of AA′-stacked honeycomb multilayers with staggered AB-sublattice potentials

In honeycomb multilayers with staggered AB-sublattice potentials, we predict gapless edge states localized to either of the odd and the even layers for the AA[Formula: see text] stacking order in which the sublattice-pseudospin polarizations of adjacent layers are antiparallel. Gaps in the projected...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kyu Won, Lee, Cheol Eui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560242/
https://www.ncbi.nlm.nih.gov/pubmed/37805558
http://dx.doi.org/10.1038/s41598-023-44084-9
Descripción
Sumario:In honeycomb multilayers with staggered AB-sublattice potentials, we predict gapless edge states localized to either of the odd and the even layers for the AA[Formula: see text] stacking order in which the sublattice-pseudospin polarizations of adjacent layers are antiparallel. Gaps in the projected layer-pseudospin spectrum suppress interlayer hopping between odd and even layers. The layer-valley Chern number corresponding to the edge states was obtained by decomposing the occupied state into two layer-pseudospin sectors by using a projected layer-pseudospin operator. For the AB[Formula: see text] stacking, the sublattice-pseudospin polarizations of adjacent layers are antiparallel, but the layer-pseudospin spectrum gap closes at the interface of the topologically different states, leading to gapped edge states. For the AA and AB stackings where the sublattice-pseudospin polarizations of the adjacent layers are parallel, the gapless edge states corresponding to quantum valley Hall states are evenly distributed across the layers.