Cargando…
Machine learning electronic structure methods based on the one-electron reduced density matrix
The theorems of density functional theory (DFT) establish bijective maps between the local external potential of a many-body system and its electron density, wavefunction and, therefore, one-particle reduced density matrix. Building on this foundation, we show that machine learning models based on t...
Autores principales: | Shao, Xuecheng, Paetow, Lukas, Tuckerman, Mark E., Pavanello, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560258/ https://www.ncbi.nlm.nih.gov/pubmed/37805614 http://dx.doi.org/10.1038/s41467-023-41953-9 |
Ejemplares similares
-
Transferable Machine-Learning Model of the Electron
Density
por: Grisafi, Andrea, et al.
Publicado: (2018) -
Strong correlation and other electronic structure methods for molecules and solids, including stochastic and reduced density matrix approaches
por: Hoggan, Philip E, et al.
Publicado: (2019) -
Quantum chemical accuracy from density functional approximations via machine learning
por: Bogojeski, Mihail, et al.
Publicado: (2020) -
Machine learning accurate exchange and correlation functionals of the electronic density
por: Dick, Sebastian, et al.
Publicado: (2020) -
Learning Electron Densities in the Condensed Phase
por: Lewis, Alan M., et al.
Publicado: (2021)