Cargando…
Bayesian learning from multi-way EEG feedback for robot navigation and target identification
Many brain-computer interfaces require a high mental workload. Recent research has shown that this could be greatly alleviated through machine learning, inferring user intentions via reactive brain responses. These signals are generated spontaneously while users merely observe assistive robots perfo...
Autores principales: | Wirth, Christopher, Toth, Jake, Arvaneh, Mahnaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560278/ https://www.ncbi.nlm.nih.gov/pubmed/37805540 http://dx.doi.org/10.1038/s41598-023-44077-8 |
Ejemplares similares
-
“You Have Reached Your Destination”: A Single Trial EEG Classification Study
por: Wirth, Christopher, et al.
Publicado: (2020) -
Familiarity Affects Entrainment of EEG in Music Listening
por: Kumagai, Yuiko, et al.
Publicado: (2017) -
Multi-Modal Haptic Feedback for Grip Force Reduction in Robotic Surgery
por: Abiri, Ahmad, et al.
Publicado: (2019) -
Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot
por: Tidoni, Emmanuele, et al.
Publicado: (2014) -
A Multimodal Neuroprosthetic Interface to Record, Modulate and Classify Electrophysiological Biomarkers Relevant to Neuropsychiatric Disorders
por: Habelt, Bettina, et al.
Publicado: (2021)