Cargando…
Adaptive structure evolution and biologically plausible synaptic plasticity for recurrent spiking neural networks
The architecture design and multi-scale learning principles of the human brain that evolved over hundreds of millions of years are crucial to realizing human-like intelligence. Spiking neural network based Liquid State Machine (LSM) serves as a suitable architecture to study brain-inspired intellige...
Autores principales: | Pan, Wenxuan, Zhao, Feifei, Zeng, Yi, Han, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560283/ https://www.ncbi.nlm.nih.gov/pubmed/37805632 http://dx.doi.org/10.1038/s41598-023-43488-x |
Ejemplares similares
-
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Temporal sequence learning via adaptation in biologically plausible spiking neural networks
por: Duarte, Renato, et al.
Publicado: (2014) -
Stabilizing working memory in spiking networks with biologically plausible synaptic dynamics
por: Seeholzer, Alexander, et al.
Publicado: (2014) -
Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks
por: Shen, Guobin, et al.
Publicado: (2022) -
Computational modeling of color perception with biologically plausible spiking neural networks
por: Cohen-Duwek, Hadar, et al.
Publicado: (2022)