Cargando…

The application of social recommendation algorithm integrating attention model in movie recommendation

To improve the accuracy of recommendations, alleviate sparse data problems, and mitigate the homogenization of traditional socialized recommendations, a gated recurrent neural network is studied to construct a relevant user preference model to mine user project preferences. Through the Preference At...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Pengjia, Yin, Boshi, Xu, Baichuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560295/
https://www.ncbi.nlm.nih.gov/pubmed/37805526
http://dx.doi.org/10.1038/s41598-023-43511-1
Descripción
Sumario:To improve the accuracy of recommendations, alleviate sparse data problems, and mitigate the homogenization of traditional socialized recommendations, a gated recurrent neural network is studied to construct a relevant user preference model to mine user project preferences. Through the Preference Attention Model Based on Social Relations (PASR), this study extracts user social influence preferences, performs preference fusion, and obtains a Recommendation Algorithm Based on User Preference and Social Influence (UPSI). The study demonstrates that the UPSI algorithm outperforms other methods like the SocialMF algorithm, yielding improved recommendation results, higher HR values, and larger NDCG values. Notably, when the K value equals 25 in Top-K recommendation and using the CiaoDVDs dataset, the NDCG value of the UPSI algorithm is 0.267, which is 0.120 higher than the SocialMF algorithm's score. Considering the user's interaction with the project and their social relationships can enhance the effectiveness of recommendations. Unlike other variants, the UPSI algorithm achieves a maximum hit rate HR value of 0.3713 and NDCG value of 0.2108 in the Douban dataset. In the CiaoDVDs dataset, the maximum hit rate HR value of UPSI is 0.4856, 0.0333 higher than UPS-A, 0.0601 higher than UPS, and 0.0901 higher than UP. Research methods can effectively improve the homogenization problem of traditional socialized recommendations, increase algorithm hit rates and NDCG values. Compared to previous studies, research methods can more fully explore the preference correlation between users, making recommended movies more in line with user requirements.