Cargando…
Disentangling brain vasculature in neurogenesis and neurodegeneration using single-cell transcriptomics
The vasculature is increasingly recognized to impact brain function in health and disease across the life span. During embryonic brain development, angiogenesis and neurogenesis are tightly coupled, coordinating the proliferation, differentiation, and migration of neural and glial progenitors. In th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560453/ https://www.ncbi.nlm.nih.gov/pubmed/37210315 http://dx.doi.org/10.1016/j.tins.2023.04.007 |
Sumario: | The vasculature is increasingly recognized to impact brain function in health and disease across the life span. During embryonic brain development, angiogenesis and neurogenesis are tightly coupled, coordinating the proliferation, differentiation, and migration of neural and glial progenitors. In the adult brain, neurovascular interactions continue to play essential roles in maintaining brain function and homeostasis. This review focuses on recent advances that leverage single-cell transcriptomics of vascular cells to uncover their subtypes, their organization and zonation in the embryonic and adult brain, and how dysfunction in neurovascular and gliovascular interactions contributes to the pathogenesis of neurodegenerative diseases. Finally, we highlight key challenges for future research in neurovascular biology. |
---|