Cargando…

aristaless-like homeobox-3 is wound induced and promotes a low-Wnt environment required for planarian head regeneration

The planarian Schmidtea mediterranea is a well-established model of adult regeneration, which is dependent on a large population of adult stem cells called neoblasts. Upon amputation, planarians undergo transcriptional wounding programs and coordinated stem cell proliferation to give rise to missing...

Descripción completa

Detalles Bibliográficos
Autores principales: Akheralie, Zaleena, Scidmore, Tanner J., Pearson, Bret J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560571/
https://www.ncbi.nlm.nih.gov/pubmed/37681295
http://dx.doi.org/10.1242/dev.201777
Descripción
Sumario:The planarian Schmidtea mediterranea is a well-established model of adult regeneration, which is dependent on a large population of adult stem cells called neoblasts. Upon amputation, planarians undergo transcriptional wounding programs and coordinated stem cell proliferation to give rise to missing tissues. Interestingly, the Wnt signaling pathway is key to guiding what tissues are regenerated, yet less known are the transcriptional regulators that ensure proper activation and timing of signaling pathway components. Here, we have identified an aristaless-like homeobox transcription factor, alx-3, that is enriched in a population of putative neural-fated progenitor cells at homeostasis, and is also upregulated in stem cells and muscle cells at anterior-facing wounds upon amputation. Knockdown of alx-3 results in failure of head regeneration and patterning defects in amputated tail fragments. alx-3 is required for the expression of several early wound-induced genes, including the Wnt inhibitor notum, which is required to establish anterior polarity during regeneration. Together, these findings reveal a role for alx-3 as an early wound-response transcriptional regulator in both muscle cells and stem cells that is required for anterior regeneration by promoting a low-Wnt environment.