Cargando…

Emerging insights into ethnic-specific TP53 germline variants

The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (includ...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, Nicholas W, Ma, Yu-Heng Vivian, Gariépy, Jean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560603/
https://www.ncbi.nlm.nih.gov/pubmed/37352403
http://dx.doi.org/10.1093/jnci/djad106
Descripción
Sumario:The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype–phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.