Cargando…
Co-embedding of edges and nodes with deep graph convolutional neural networks
Graph neural networks (GNNs) have significant advantages in dealing with non-Euclidean data and have been widely used in various fields. However, most of the existing GNN models face two main challenges: (1) Most GNN models built upon the message-passing framework exhibit a shallow structure, which...
Autores principales: | Zhou, Yuchen, Huo, Hongtao, Hou, Zhiwen, Bu, Lingbin, Mao, Jingyi, Wang, Yifan, Lv, Xiaojun, Bu, Fanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560674/ https://www.ncbi.nlm.nih.gov/pubmed/37807013 http://dx.doi.org/10.1038/s41598-023-44224-1 |
Ejemplares similares
-
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023) -
Author Correction: Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023) -
A dynamic graph Hawkes process based on linear complexity self-attention for dynamic recommender systems
por: Hou, Zhiwen, et al.
Publicado: (2023) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020)